About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

# reim [![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url] > Return the real and imaginary components of a double-precision complex floating-point number.
## Installation ```bash npm install @stdlib/complex-float64-reim ```
## Usage ```javascript var reim = require( '@stdlib/complex-float64-reim' ); ``` #### reim( z ) Returns the **real** and **imaginary** components of a double-precision complex floating-point number. ```javascript var Complex128 = require( '@stdlib/complex-float64-ctor' ); var z = new Complex128( 5.0, 3.0 ); var out = reim( z ); // returns [ 5.0, 3.0 ] ```
## Examples ```javascript var Complex128 = require( '@stdlib/complex-float64-ctor' ); var discreteUniform = require( '@stdlib/random-base-discrete-uniform' ); var filledarrayBy = require( '@stdlib/array-filled-by' ); var reim = require( '@stdlib/complex-float64-reim' ); function random() { return new Complex128( discreteUniform( -10, 10 ), discreteUniform( -10, 10 ) ); } // Generate an array of random complex numbers: var x = filledarrayBy( 100, 'complex128', random ); // returns // Return the real and imaginary components of each complex number... var out; var z; var i; for ( i = 0; i < x.length; i++ ) { z = x.get( i ); out = reim( z ); console.log( '%s => %d, %d', z.toString(), out[ 0 ], out[ 1 ] ); } ```
* * *
## C APIs
### Usage ```c #include "stdlib/complex/float64/reim.h" ``` #### stdlib_complex128_reim( z, \*re, \*im ) Returns the real and imaginary components of a double-precision complex floating-point number. ```c #include "stdlib/complex/float64/ctor.h" stdlib_complex128_t z = stdlib_complex128( 5.0, 2.0 ); // ... double re; double im; stdlib_complex128_reim( z, &re, &im ); ``` The function accepts the following arguments: - **z**: `[in] stdlib_complex128_t` double-precision complex floating-point number. - **re**: `[out] double*` destination for real component. - **im**: `[out] double*` destination for imaginary component. ```c void stdlib_complex128_reim( const stdlib_complex128_t z, double *re, double *im ); ```
### Examples ```c #include "stdlib/complex/float64/reim.h" #include "stdlib/complex/float64/ctor.h" #include int main( void ) { const stdlib_complex128_t x[] = { stdlib_complex128( 5.0, 2.0 ), stdlib_complex128( -2.0, 1.0 ), stdlib_complex128( 0.0, -0.0 ), stdlib_complex128( 0.0/0.0, 0.0/0.0 ) }; double re; double im; int i; for ( i = 0; i < 4; i++ ) { stdlib_complex128_reim( x[ i ], &re, &im ); printf( "reim(v) = %lf, %lf\n", re, im ); } } ```
* * * ## Notice This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more. For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib]. #### Community [![Chat][chat-image]][chat-url] --- ## License See [LICENSE][stdlib-license]. ## Copyright Copyright © 2016-2024. The Stdlib [Authors][stdlib-authors].