rittenhop-dev/versions/5.94.2/node_modules/yjs/dist/yjs.mjs
2024-09-23 19:40:12 -04:00

10242 lines
290 KiB
JavaScript
Raw Blame History

import { ObservableV2 } from 'lib0/observable';
import * as array from 'lib0/array';
import * as math from 'lib0/math';
import * as map from 'lib0/map';
import * as encoding from 'lib0/encoding';
import * as decoding from 'lib0/decoding';
import * as random from 'lib0/random';
import * as promise from 'lib0/promise';
import * as buffer from 'lib0/buffer';
import * as error from 'lib0/error';
import * as binary from 'lib0/binary';
import * as f from 'lib0/function';
import { callAll } from 'lib0/function';
import * as set from 'lib0/set';
import * as logging from 'lib0/logging';
import * as time from 'lib0/time';
import * as string from 'lib0/string';
import * as iterator from 'lib0/iterator';
import * as object from 'lib0/object';
/**
* This is an abstract interface that all Connectors should implement to keep them interchangeable.
*
* @note This interface is experimental and it is not advised to actually inherit this class.
* It just serves as typing information.
*
* @extends {ObservableV2<any>}
*/
class AbstractConnector extends ObservableV2 {
/**
* @param {Doc} ydoc
* @param {any} awareness
*/
constructor (ydoc, awareness) {
super();
this.doc = ydoc;
this.awareness = awareness;
}
}
class DeleteItem {
/**
* @param {number} clock
* @param {number} len
*/
constructor (clock, len) {
/**
* @type {number}
*/
this.clock = clock;
/**
* @type {number}
*/
this.len = len;
}
}
/**
* We no longer maintain a DeleteStore. DeleteSet is a temporary object that is created when needed.
* - When created in a transaction, it must only be accessed after sorting, and merging
* - This DeleteSet is send to other clients
* - We do not create a DeleteSet when we send a sync message. The DeleteSet message is created directly from StructStore
* - We read a DeleteSet as part of a sync/update message. In this case the DeleteSet is already sorted and merged.
*/
class DeleteSet {
constructor () {
/**
* @type {Map<number,Array<DeleteItem>>}
*/
this.clients = new Map();
}
}
/**
* Iterate over all structs that the DeleteSet gc's.
*
* @param {Transaction} transaction
* @param {DeleteSet} ds
* @param {function(GC|Item):void} f
*
* @function
*/
const iterateDeletedStructs = (transaction, ds, f) =>
ds.clients.forEach((deletes, clientid) => {
const structs = /** @type {Array<GC|Item>} */ (transaction.doc.store.clients.get(clientid));
for (let i = 0; i < deletes.length; i++) {
const del = deletes[i];
iterateStructs(transaction, structs, del.clock, del.len, f);
}
});
/**
* @param {Array<DeleteItem>} dis
* @param {number} clock
* @return {number|null}
*
* @private
* @function
*/
const findIndexDS = (dis, clock) => {
let left = 0;
let right = dis.length - 1;
while (left <= right) {
const midindex = math.floor((left + right) / 2);
const mid = dis[midindex];
const midclock = mid.clock;
if (midclock <= clock) {
if (clock < midclock + mid.len) {
return midindex
}
left = midindex + 1;
} else {
right = midindex - 1;
}
}
return null
};
/**
* @param {DeleteSet} ds
* @param {ID} id
* @return {boolean}
*
* @private
* @function
*/
const isDeleted = (ds, id) => {
const dis = ds.clients.get(id.client);
return dis !== undefined && findIndexDS(dis, id.clock) !== null
};
/**
* @param {DeleteSet} ds
*
* @private
* @function
*/
const sortAndMergeDeleteSet = ds => {
ds.clients.forEach(dels => {
dels.sort((a, b) => a.clock - b.clock);
// merge items without filtering or splicing the array
// i is the current pointer
// j refers to the current insert position for the pointed item
// try to merge dels[i] into dels[j-1] or set dels[j]=dels[i]
let i, j;
for (i = 1, j = 1; i < dels.length; i++) {
const left = dels[j - 1];
const right = dels[i];
if (left.clock + left.len >= right.clock) {
left.len = math.max(left.len, right.clock + right.len - left.clock);
} else {
if (j < i) {
dels[j] = right;
}
j++;
}
}
dels.length = j;
});
};
/**
* @param {Array<DeleteSet>} dss
* @return {DeleteSet} A fresh DeleteSet
*/
const mergeDeleteSets = dss => {
const merged = new DeleteSet();
for (let dssI = 0; dssI < dss.length; dssI++) {
dss[dssI].clients.forEach((delsLeft, client) => {
if (!merged.clients.has(client)) {
// Write all missing keys from current ds and all following.
// If merged already contains `client` current ds has already been added.
/**
* @type {Array<DeleteItem>}
*/
const dels = delsLeft.slice();
for (let i = dssI + 1; i < dss.length; i++) {
array.appendTo(dels, dss[i].clients.get(client) || []);
}
merged.clients.set(client, dels);
}
});
}
sortAndMergeDeleteSet(merged);
return merged
};
/**
* @param {DeleteSet} ds
* @param {number} client
* @param {number} clock
* @param {number} length
*
* @private
* @function
*/
const addToDeleteSet = (ds, client, clock, length) => {
map.setIfUndefined(ds.clients, client, () => /** @type {Array<DeleteItem>} */ ([])).push(new DeleteItem(clock, length));
};
const createDeleteSet = () => new DeleteSet();
/**
* @param {StructStore} ss
* @return {DeleteSet} Merged and sorted DeleteSet
*
* @private
* @function
*/
const createDeleteSetFromStructStore = ss => {
const ds = createDeleteSet();
ss.clients.forEach((structs, client) => {
/**
* @type {Array<DeleteItem>}
*/
const dsitems = [];
for (let i = 0; i < structs.length; i++) {
const struct = structs[i];
if (struct.deleted) {
const clock = struct.id.clock;
let len = struct.length;
if (i + 1 < structs.length) {
for (let next = structs[i + 1]; i + 1 < structs.length && next.deleted; next = structs[++i + 1]) {
len += next.length;
}
}
dsitems.push(new DeleteItem(clock, len));
}
}
if (dsitems.length > 0) {
ds.clients.set(client, dsitems);
}
});
return ds
};
/**
* @param {DSEncoderV1 | DSEncoderV2} encoder
* @param {DeleteSet} ds
*
* @private
* @function
*/
const writeDeleteSet = (encoder, ds) => {
encoding.writeVarUint(encoder.restEncoder, ds.clients.size);
// Ensure that the delete set is written in a deterministic order
array.from(ds.clients.entries())
.sort((a, b) => b[0] - a[0])
.forEach(([client, dsitems]) => {
encoder.resetDsCurVal();
encoding.writeVarUint(encoder.restEncoder, client);
const len = dsitems.length;
encoding.writeVarUint(encoder.restEncoder, len);
for (let i = 0; i < len; i++) {
const item = dsitems[i];
encoder.writeDsClock(item.clock);
encoder.writeDsLen(item.len);
}
});
};
/**
* @param {DSDecoderV1 | DSDecoderV2} decoder
* @return {DeleteSet}
*
* @private
* @function
*/
const readDeleteSet = decoder => {
const ds = new DeleteSet();
const numClients = decoding.readVarUint(decoder.restDecoder);
for (let i = 0; i < numClients; i++) {
decoder.resetDsCurVal();
const client = decoding.readVarUint(decoder.restDecoder);
const numberOfDeletes = decoding.readVarUint(decoder.restDecoder);
if (numberOfDeletes > 0) {
const dsField = map.setIfUndefined(ds.clients, client, () => /** @type {Array<DeleteItem>} */ ([]));
for (let i = 0; i < numberOfDeletes; i++) {
dsField.push(new DeleteItem(decoder.readDsClock(), decoder.readDsLen()));
}
}
}
return ds
};
/**
* @todo YDecoder also contains references to String and other Decoders. Would make sense to exchange YDecoder.toUint8Array for YDecoder.DsToUint8Array()..
*/
/**
* @param {DSDecoderV1 | DSDecoderV2} decoder
* @param {Transaction} transaction
* @param {StructStore} store
* @return {Uint8Array|null} Returns a v2 update containing all deletes that couldn't be applied yet; or null if all deletes were applied successfully.
*
* @private
* @function
*/
const readAndApplyDeleteSet = (decoder, transaction, store) => {
const unappliedDS = new DeleteSet();
const numClients = decoding.readVarUint(decoder.restDecoder);
for (let i = 0; i < numClients; i++) {
decoder.resetDsCurVal();
const client = decoding.readVarUint(decoder.restDecoder);
const numberOfDeletes = decoding.readVarUint(decoder.restDecoder);
const structs = store.clients.get(client) || [];
const state = getState(store, client);
for (let i = 0; i < numberOfDeletes; i++) {
const clock = decoder.readDsClock();
const clockEnd = clock + decoder.readDsLen();
if (clock < state) {
if (state < clockEnd) {
addToDeleteSet(unappliedDS, client, state, clockEnd - state);
}
let index = findIndexSS(structs, clock);
/**
* We can ignore the case of GC and Delete structs, because we are going to skip them
* @type {Item}
*/
// @ts-ignore
let struct = structs[index];
// split the first item if necessary
if (!struct.deleted && struct.id.clock < clock) {
structs.splice(index + 1, 0, splitItem(transaction, struct, clock - struct.id.clock));
index++; // increase we now want to use the next struct
}
while (index < structs.length) {
// @ts-ignore
struct = structs[index++];
if (struct.id.clock < clockEnd) {
if (!struct.deleted) {
if (clockEnd < struct.id.clock + struct.length) {
structs.splice(index, 0, splitItem(transaction, struct, clockEnd - struct.id.clock));
}
struct.delete(transaction);
}
} else {
break
}
}
} else {
addToDeleteSet(unappliedDS, client, clock, clockEnd - clock);
}
}
}
if (unappliedDS.clients.size > 0) {
const ds = new UpdateEncoderV2();
encoding.writeVarUint(ds.restEncoder, 0); // encode 0 structs
writeDeleteSet(ds, unappliedDS);
return ds.toUint8Array()
}
return null
};
/**
* @param {DeleteSet} ds1
* @param {DeleteSet} ds2
*/
const equalDeleteSets = (ds1, ds2) => {
if (ds1.clients.size !== ds2.clients.size) return false
for (const [client, deleteItems1] of ds1.clients.entries()) {
const deleteItems2 = /** @type {Array<import('../internals.js').DeleteItem>} */ (ds2.clients.get(client));
if (deleteItems2 === undefined || deleteItems1.length !== deleteItems2.length) return false
for (let i = 0; i < deleteItems1.length; i++) {
const di1 = deleteItems1[i];
const di2 = deleteItems2[i];
if (di1.clock !== di2.clock || di1.len !== di2.len) {
return false
}
}
}
return true
};
/**
* @module Y
*/
const generateNewClientId = random.uint32;
/**
* @typedef {Object} DocOpts
* @property {boolean} [DocOpts.gc=true] Disable garbage collection (default: gc=true)
* @property {function(Item):boolean} [DocOpts.gcFilter] Will be called before an Item is garbage collected. Return false to keep the Item.
* @property {string} [DocOpts.guid] Define a globally unique identifier for this document
* @property {string | null} [DocOpts.collectionid] Associate this document with a collection. This only plays a role if your provider has a concept of collection.
* @property {any} [DocOpts.meta] Any kind of meta information you want to associate with this document. If this is a subdocument, remote peers will store the meta information as well.
* @property {boolean} [DocOpts.autoLoad] If a subdocument, automatically load document. If this is a subdocument, remote peers will load the document as well automatically.
* @property {boolean} [DocOpts.shouldLoad] Whether the document should be synced by the provider now. This is toggled to true when you call ydoc.load()
*/
/**
* @typedef {Object} DocEvents
* @property {function(Doc):void} DocEvents.destroy
* @property {function(Doc):void} DocEvents.load
* @property {function(boolean, Doc):void} DocEvents.sync
* @property {function(Uint8Array, any, Doc, Transaction):void} DocEvents.update
* @property {function(Uint8Array, any, Doc, Transaction):void} DocEvents.updateV2
* @property {function(Doc):void} DocEvents.beforeAllTransactions
* @property {function(Transaction, Doc):void} DocEvents.beforeTransaction
* @property {function(Transaction, Doc):void} DocEvents.beforeObserverCalls
* @property {function(Transaction, Doc):void} DocEvents.afterTransaction
* @property {function(Transaction, Doc):void} DocEvents.afterTransactionCleanup
* @property {function(Doc, Array<Transaction>):void} DocEvents.afterAllTransactions
* @property {function({ loaded: Set<Doc>, added: Set<Doc>, removed: Set<Doc> }, Doc, Transaction):void} DocEvents.subdocs
*/
/**
* A Yjs instance handles the state of shared data.
* @extends ObservableV2<DocEvents>
*/
class Doc extends ObservableV2 {
/**
* @param {DocOpts} opts configuration
*/
constructor ({ guid = random.uuidv4(), collectionid = null, gc = true, gcFilter = () => true, meta = null, autoLoad = false, shouldLoad = true } = {}) {
super();
this.gc = gc;
this.gcFilter = gcFilter;
this.clientID = generateNewClientId();
this.guid = guid;
this.collectionid = collectionid;
/**
* @type {Map<string, AbstractType<YEvent<any>>>}
*/
this.share = new Map();
this.store = new StructStore();
/**
* @type {Transaction | null}
*/
this._transaction = null;
/**
* @type {Array<Transaction>}
*/
this._transactionCleanups = [];
/**
* @type {Set<Doc>}
*/
this.subdocs = new Set();
/**
* If this document is a subdocument - a document integrated into another document - then _item is defined.
* @type {Item?}
*/
this._item = null;
this.shouldLoad = shouldLoad;
this.autoLoad = autoLoad;
this.meta = meta;
/**
* This is set to true when the persistence provider loaded the document from the database or when the `sync` event fires.
* Note that not all providers implement this feature. Provider authors are encouraged to fire the `load` event when the doc content is loaded from the database.
*
* @type {boolean}
*/
this.isLoaded = false;
/**
* This is set to true when the connection provider has successfully synced with a backend.
* Note that when using peer-to-peer providers this event may not provide very useful.
* Also note that not all providers implement this feature. Provider authors are encouraged to fire
* the `sync` event when the doc has been synced (with `true` as a parameter) or if connection is
* lost (with false as a parameter).
*/
this.isSynced = false;
this.isDestroyed = false;
/**
* Promise that resolves once the document has been loaded from a presistence provider.
*/
this.whenLoaded = promise.create(resolve => {
this.on('load', () => {
this.isLoaded = true;
resolve(this);
});
});
const provideSyncedPromise = () => promise.create(resolve => {
/**
* @param {boolean} isSynced
*/
const eventHandler = (isSynced) => {
if (isSynced === undefined || isSynced === true) {
this.off('sync', eventHandler);
resolve();
}
};
this.on('sync', eventHandler);
});
this.on('sync', isSynced => {
if (isSynced === false && this.isSynced) {
this.whenSynced = provideSyncedPromise();
}
this.isSynced = isSynced === undefined || isSynced === true;
if (this.isSynced && !this.isLoaded) {
this.emit('load', [this]);
}
});
/**
* Promise that resolves once the document has been synced with a backend.
* This promise is recreated when the connection is lost.
* Note the documentation about the `isSynced` property.
*/
this.whenSynced = provideSyncedPromise();
}
/**
* Notify the parent document that you request to load data into this subdocument (if it is a subdocument).
*
* `load()` might be used in the future to request any provider to load the most current data.
*
* It is safe to call `load()` multiple times.
*/
load () {
const item = this._item;
if (item !== null && !this.shouldLoad) {
transact(/** @type {any} */ (item.parent).doc, transaction => {
transaction.subdocsLoaded.add(this);
}, null, true);
}
this.shouldLoad = true;
}
getSubdocs () {
return this.subdocs
}
getSubdocGuids () {
return new Set(array.from(this.subdocs).map(doc => doc.guid))
}
/**
* Changes that happen inside of a transaction are bundled. This means that
* the observer fires _after_ the transaction is finished and that all changes
* that happened inside of the transaction are sent as one message to the
* other peers.
*
* @template T
* @param {function(Transaction):T} f The function that should be executed as a transaction
* @param {any} [origin] Origin of who started the transaction. Will be stored on transaction.origin
* @return T
*
* @public
*/
transact (f, origin = null) {
return transact(this, f, origin)
}
/**
* Define a shared data type.
*
* Multiple calls of `ydoc.get(name, TypeConstructor)` yield the same result
* and do not overwrite each other. I.e.
* `ydoc.get(name, Y.Array) === ydoc.get(name, Y.Array)`
*
* After this method is called, the type is also available on `ydoc.share.get(name)`.
*
* *Best Practices:*
* Define all types right after the Y.Doc instance is created and store them in a separate object.
* Also use the typed methods `getText(name)`, `getArray(name)`, ..
*
* @template {typeof AbstractType<any>} Type
* @example
* const ydoc = new Y.Doc(..)
* const appState = {
* document: ydoc.getText('document')
* comments: ydoc.getArray('comments')
* }
*
* @param {string} name
* @param {Type} TypeConstructor The constructor of the type definition. E.g. Y.Text, Y.Array, Y.Map, ...
* @return {InstanceType<Type>} The created type. Constructed with TypeConstructor
*
* @public
*/
get (name, TypeConstructor = /** @type {any} */ (AbstractType)) {
const type = map.setIfUndefined(this.share, name, () => {
// @ts-ignore
const t = new TypeConstructor();
t._integrate(this, null);
return t
});
const Constr = type.constructor;
if (TypeConstructor !== AbstractType && Constr !== TypeConstructor) {
if (Constr === AbstractType) {
// @ts-ignore
const t = new TypeConstructor();
t._map = type._map;
type._map.forEach(/** @param {Item?} n */ n => {
for (; n !== null; n = n.left) {
// @ts-ignore
n.parent = t;
}
});
t._start = type._start;
for (let n = t._start; n !== null; n = n.right) {
n.parent = t;
}
t._length = type._length;
this.share.set(name, t);
t._integrate(this, null);
return /** @type {InstanceType<Type>} */ (t)
} else {
throw new Error(`Type with the name ${name} has already been defined with a different constructor`)
}
}
return /** @type {InstanceType<Type>} */ (type)
}
/**
* @template T
* @param {string} [name]
* @return {YArray<T>}
*
* @public
*/
getArray (name = '') {
return /** @type {YArray<T>} */ (this.get(name, YArray))
}
/**
* @param {string} [name]
* @return {YText}
*
* @public
*/
getText (name = '') {
return this.get(name, YText)
}
/**
* @template T
* @param {string} [name]
* @return {YMap<T>}
*
* @public
*/
getMap (name = '') {
return /** @type {YMap<T>} */ (this.get(name, YMap))
}
/**
* @param {string} [name]
* @return {YXmlElement}
*
* @public
*/
getXmlElement (name = '') {
return /** @type {YXmlElement<{[key:string]:string}>} */ (this.get(name, YXmlElement))
}
/**
* @param {string} [name]
* @return {YXmlFragment}
*
* @public
*/
getXmlFragment (name = '') {
return this.get(name, YXmlFragment)
}
/**
* Converts the entire document into a js object, recursively traversing each yjs type
* Doesn't log types that have not been defined (using ydoc.getType(..)).
*
* @deprecated Do not use this method and rather call toJSON directly on the shared types.
*
* @return {Object<string, any>}
*/
toJSON () {
/**
* @type {Object<string, any>}
*/
const doc = {};
this.share.forEach((value, key) => {
doc[key] = value.toJSON();
});
return doc
}
/**
* Emit `destroy` event and unregister all event handlers.
*/
destroy () {
this.isDestroyed = true;
array.from(this.subdocs).forEach(subdoc => subdoc.destroy());
const item = this._item;
if (item !== null) {
this._item = null;
const content = /** @type {ContentDoc} */ (item.content);
content.doc = new Doc({ guid: this.guid, ...content.opts, shouldLoad: false });
content.doc._item = item;
transact(/** @type {any} */ (item).parent.doc, transaction => {
const doc = content.doc;
if (!item.deleted) {
transaction.subdocsAdded.add(doc);
}
transaction.subdocsRemoved.add(this);
}, null, true);
}
// @ts-ignore
this.emit('destroyed', [true]); // DEPRECATED!
this.emit('destroy', [this]);
super.destroy();
}
}
class DSDecoderV1 {
/**
* @param {decoding.Decoder} decoder
*/
constructor (decoder) {
this.restDecoder = decoder;
}
resetDsCurVal () {
// nop
}
/**
* @return {number}
*/
readDsClock () {
return decoding.readVarUint(this.restDecoder)
}
/**
* @return {number}
*/
readDsLen () {
return decoding.readVarUint(this.restDecoder)
}
}
class UpdateDecoderV1 extends DSDecoderV1 {
/**
* @return {ID}
*/
readLeftID () {
return createID(decoding.readVarUint(this.restDecoder), decoding.readVarUint(this.restDecoder))
}
/**
* @return {ID}
*/
readRightID () {
return createID(decoding.readVarUint(this.restDecoder), decoding.readVarUint(this.restDecoder))
}
/**
* Read the next client id.
* Use this in favor of readID whenever possible to reduce the number of objects created.
*/
readClient () {
return decoding.readVarUint(this.restDecoder)
}
/**
* @return {number} info An unsigned 8-bit integer
*/
readInfo () {
return decoding.readUint8(this.restDecoder)
}
/**
* @return {string}
*/
readString () {
return decoding.readVarString(this.restDecoder)
}
/**
* @return {boolean} isKey
*/
readParentInfo () {
return decoding.readVarUint(this.restDecoder) === 1
}
/**
* @return {number} info An unsigned 8-bit integer
*/
readTypeRef () {
return decoding.readVarUint(this.restDecoder)
}
/**
* Write len of a struct - well suited for Opt RLE encoder.
*
* @return {number} len
*/
readLen () {
return decoding.readVarUint(this.restDecoder)
}
/**
* @return {any}
*/
readAny () {
return decoding.readAny(this.restDecoder)
}
/**
* @return {Uint8Array}
*/
readBuf () {
return buffer.copyUint8Array(decoding.readVarUint8Array(this.restDecoder))
}
/**
* Legacy implementation uses JSON parse. We use any-decoding in v2.
*
* @return {any}
*/
readJSON () {
return JSON.parse(decoding.readVarString(this.restDecoder))
}
/**
* @return {string}
*/
readKey () {
return decoding.readVarString(this.restDecoder)
}
}
class DSDecoderV2 {
/**
* @param {decoding.Decoder} decoder
*/
constructor (decoder) {
/**
* @private
*/
this.dsCurrVal = 0;
this.restDecoder = decoder;
}
resetDsCurVal () {
this.dsCurrVal = 0;
}
/**
* @return {number}
*/
readDsClock () {
this.dsCurrVal += decoding.readVarUint(this.restDecoder);
return this.dsCurrVal
}
/**
* @return {number}
*/
readDsLen () {
const diff = decoding.readVarUint(this.restDecoder) + 1;
this.dsCurrVal += diff;
return diff
}
}
class UpdateDecoderV2 extends DSDecoderV2 {
/**
* @param {decoding.Decoder} decoder
*/
constructor (decoder) {
super(decoder);
/**
* List of cached keys. If the keys[id] does not exist, we read a new key
* from stringEncoder and push it to keys.
*
* @type {Array<string>}
*/
this.keys = [];
decoding.readVarUint(decoder); // read feature flag - currently unused
this.keyClockDecoder = new decoding.IntDiffOptRleDecoder(decoding.readVarUint8Array(decoder));
this.clientDecoder = new decoding.UintOptRleDecoder(decoding.readVarUint8Array(decoder));
this.leftClockDecoder = new decoding.IntDiffOptRleDecoder(decoding.readVarUint8Array(decoder));
this.rightClockDecoder = new decoding.IntDiffOptRleDecoder(decoding.readVarUint8Array(decoder));
this.infoDecoder = new decoding.RleDecoder(decoding.readVarUint8Array(decoder), decoding.readUint8);
this.stringDecoder = new decoding.StringDecoder(decoding.readVarUint8Array(decoder));
this.parentInfoDecoder = new decoding.RleDecoder(decoding.readVarUint8Array(decoder), decoding.readUint8);
this.typeRefDecoder = new decoding.UintOptRleDecoder(decoding.readVarUint8Array(decoder));
this.lenDecoder = new decoding.UintOptRleDecoder(decoding.readVarUint8Array(decoder));
}
/**
* @return {ID}
*/
readLeftID () {
return new ID(this.clientDecoder.read(), this.leftClockDecoder.read())
}
/**
* @return {ID}
*/
readRightID () {
return new ID(this.clientDecoder.read(), this.rightClockDecoder.read())
}
/**
* Read the next client id.
* Use this in favor of readID whenever possible to reduce the number of objects created.
*/
readClient () {
return this.clientDecoder.read()
}
/**
* @return {number} info An unsigned 8-bit integer
*/
readInfo () {
return /** @type {number} */ (this.infoDecoder.read())
}
/**
* @return {string}
*/
readString () {
return this.stringDecoder.read()
}
/**
* @return {boolean}
*/
readParentInfo () {
return this.parentInfoDecoder.read() === 1
}
/**
* @return {number} An unsigned 8-bit integer
*/
readTypeRef () {
return this.typeRefDecoder.read()
}
/**
* Write len of a struct - well suited for Opt RLE encoder.
*
* @return {number}
*/
readLen () {
return this.lenDecoder.read()
}
/**
* @return {any}
*/
readAny () {
return decoding.readAny(this.restDecoder)
}
/**
* @return {Uint8Array}
*/
readBuf () {
return decoding.readVarUint8Array(this.restDecoder)
}
/**
* This is mainly here for legacy purposes.
*
* Initial we incoded objects using JSON. Now we use the much faster lib0/any-encoder. This method mainly exists for legacy purposes for the v1 encoder.
*
* @return {any}
*/
readJSON () {
return decoding.readAny(this.restDecoder)
}
/**
* @return {string}
*/
readKey () {
const keyClock = this.keyClockDecoder.read();
if (keyClock < this.keys.length) {
return this.keys[keyClock]
} else {
const key = this.stringDecoder.read();
this.keys.push(key);
return key
}
}
}
class DSEncoderV1 {
constructor () {
this.restEncoder = encoding.createEncoder();
}
toUint8Array () {
return encoding.toUint8Array(this.restEncoder)
}
resetDsCurVal () {
// nop
}
/**
* @param {number} clock
*/
writeDsClock (clock) {
encoding.writeVarUint(this.restEncoder, clock);
}
/**
* @param {number} len
*/
writeDsLen (len) {
encoding.writeVarUint(this.restEncoder, len);
}
}
class UpdateEncoderV1 extends DSEncoderV1 {
/**
* @param {ID} id
*/
writeLeftID (id) {
encoding.writeVarUint(this.restEncoder, id.client);
encoding.writeVarUint(this.restEncoder, id.clock);
}
/**
* @param {ID} id
*/
writeRightID (id) {
encoding.writeVarUint(this.restEncoder, id.client);
encoding.writeVarUint(this.restEncoder, id.clock);
}
/**
* Use writeClient and writeClock instead of writeID if possible.
* @param {number} client
*/
writeClient (client) {
encoding.writeVarUint(this.restEncoder, client);
}
/**
* @param {number} info An unsigned 8-bit integer
*/
writeInfo (info) {
encoding.writeUint8(this.restEncoder, info);
}
/**
* @param {string} s
*/
writeString (s) {
encoding.writeVarString(this.restEncoder, s);
}
/**
* @param {boolean} isYKey
*/
writeParentInfo (isYKey) {
encoding.writeVarUint(this.restEncoder, isYKey ? 1 : 0);
}
/**
* @param {number} info An unsigned 8-bit integer
*/
writeTypeRef (info) {
encoding.writeVarUint(this.restEncoder, info);
}
/**
* Write len of a struct - well suited for Opt RLE encoder.
*
* @param {number} len
*/
writeLen (len) {
encoding.writeVarUint(this.restEncoder, len);
}
/**
* @param {any} any
*/
writeAny (any) {
encoding.writeAny(this.restEncoder, any);
}
/**
* @param {Uint8Array} buf
*/
writeBuf (buf) {
encoding.writeVarUint8Array(this.restEncoder, buf);
}
/**
* @param {any} embed
*/
writeJSON (embed) {
encoding.writeVarString(this.restEncoder, JSON.stringify(embed));
}
/**
* @param {string} key
*/
writeKey (key) {
encoding.writeVarString(this.restEncoder, key);
}
}
class DSEncoderV2 {
constructor () {
this.restEncoder = encoding.createEncoder(); // encodes all the rest / non-optimized
this.dsCurrVal = 0;
}
toUint8Array () {
return encoding.toUint8Array(this.restEncoder)
}
resetDsCurVal () {
this.dsCurrVal = 0;
}
/**
* @param {number} clock
*/
writeDsClock (clock) {
const diff = clock - this.dsCurrVal;
this.dsCurrVal = clock;
encoding.writeVarUint(this.restEncoder, diff);
}
/**
* @param {number} len
*/
writeDsLen (len) {
if (len === 0) {
error.unexpectedCase();
}
encoding.writeVarUint(this.restEncoder, len - 1);
this.dsCurrVal += len;
}
}
class UpdateEncoderV2 extends DSEncoderV2 {
constructor () {
super();
/**
* @type {Map<string,number>}
*/
this.keyMap = new Map();
/**
* Refers to the next uniqe key-identifier to me used.
* See writeKey method for more information.
*
* @type {number}
*/
this.keyClock = 0;
this.keyClockEncoder = new encoding.IntDiffOptRleEncoder();
this.clientEncoder = new encoding.UintOptRleEncoder();
this.leftClockEncoder = new encoding.IntDiffOptRleEncoder();
this.rightClockEncoder = new encoding.IntDiffOptRleEncoder();
this.infoEncoder = new encoding.RleEncoder(encoding.writeUint8);
this.stringEncoder = new encoding.StringEncoder();
this.parentInfoEncoder = new encoding.RleEncoder(encoding.writeUint8);
this.typeRefEncoder = new encoding.UintOptRleEncoder();
this.lenEncoder = new encoding.UintOptRleEncoder();
}
toUint8Array () {
const encoder = encoding.createEncoder();
encoding.writeVarUint(encoder, 0); // this is a feature flag that we might use in the future
encoding.writeVarUint8Array(encoder, this.keyClockEncoder.toUint8Array());
encoding.writeVarUint8Array(encoder, this.clientEncoder.toUint8Array());
encoding.writeVarUint8Array(encoder, this.leftClockEncoder.toUint8Array());
encoding.writeVarUint8Array(encoder, this.rightClockEncoder.toUint8Array());
encoding.writeVarUint8Array(encoder, encoding.toUint8Array(this.infoEncoder));
encoding.writeVarUint8Array(encoder, this.stringEncoder.toUint8Array());
encoding.writeVarUint8Array(encoder, encoding.toUint8Array(this.parentInfoEncoder));
encoding.writeVarUint8Array(encoder, this.typeRefEncoder.toUint8Array());
encoding.writeVarUint8Array(encoder, this.lenEncoder.toUint8Array());
// @note The rest encoder is appended! (note the missing var)
encoding.writeUint8Array(encoder, encoding.toUint8Array(this.restEncoder));
return encoding.toUint8Array(encoder)
}
/**
* @param {ID} id
*/
writeLeftID (id) {
this.clientEncoder.write(id.client);
this.leftClockEncoder.write(id.clock);
}
/**
* @param {ID} id
*/
writeRightID (id) {
this.clientEncoder.write(id.client);
this.rightClockEncoder.write(id.clock);
}
/**
* @param {number} client
*/
writeClient (client) {
this.clientEncoder.write(client);
}
/**
* @param {number} info An unsigned 8-bit integer
*/
writeInfo (info) {
this.infoEncoder.write(info);
}
/**
* @param {string} s
*/
writeString (s) {
this.stringEncoder.write(s);
}
/**
* @param {boolean} isYKey
*/
writeParentInfo (isYKey) {
this.parentInfoEncoder.write(isYKey ? 1 : 0);
}
/**
* @param {number} info An unsigned 8-bit integer
*/
writeTypeRef (info) {
this.typeRefEncoder.write(info);
}
/**
* Write len of a struct - well suited for Opt RLE encoder.
*
* @param {number} len
*/
writeLen (len) {
this.lenEncoder.write(len);
}
/**
* @param {any} any
*/
writeAny (any) {
encoding.writeAny(this.restEncoder, any);
}
/**
* @param {Uint8Array} buf
*/
writeBuf (buf) {
encoding.writeVarUint8Array(this.restEncoder, buf);
}
/**
* This is mainly here for legacy purposes.
*
* Initial we incoded objects using JSON. Now we use the much faster lib0/any-encoder. This method mainly exists for legacy purposes for the v1 encoder.
*
* @param {any} embed
*/
writeJSON (embed) {
encoding.writeAny(this.restEncoder, embed);
}
/**
* Property keys are often reused. For example, in y-prosemirror the key `bold` might
* occur very often. For a 3d application, the key `position` might occur very often.
*
* We cache these keys in a Map and refer to them via a unique number.
*
* @param {string} key
*/
writeKey (key) {
const clock = this.keyMap.get(key);
if (clock === undefined) {
/**
* @todo uncomment to introduce this feature finally
*
* Background. The ContentFormat object was always encoded using writeKey, but the decoder used to use readString.
* Furthermore, I forgot to set the keyclock. So everything was working fine.
*
* However, this feature here is basically useless as it is not being used (it actually only consumes extra memory).
*
* I don't know yet how to reintroduce this feature..
*
* Older clients won't be able to read updates when we reintroduce this feature. So this should probably be done using a flag.
*
*/
// this.keyMap.set(key, this.keyClock)
this.keyClockEncoder.write(this.keyClock++);
this.stringEncoder.write(key);
} else {
this.keyClockEncoder.write(clock);
}
}
}
/**
* @module encoding
*/
/*
* We use the first five bits in the info flag for determining the type of the struct.
*
* 0: GC
* 1: Item with Deleted content
* 2: Item with JSON content
* 3: Item with Binary content
* 4: Item with String content
* 5: Item with Embed content (for richtext content)
* 6: Item with Format content (a formatting marker for richtext content)
* 7: Item with Type
*/
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
* @param {Array<GC|Item>} structs All structs by `client`
* @param {number} client
* @param {number} clock write structs starting with `ID(client,clock)`
*
* @function
*/
const writeStructs = (encoder, structs, client, clock) => {
// write first id
clock = math.max(clock, structs[0].id.clock); // make sure the first id exists
const startNewStructs = findIndexSS(structs, clock);
// write # encoded structs
encoding.writeVarUint(encoder.restEncoder, structs.length - startNewStructs);
encoder.writeClient(client);
encoding.writeVarUint(encoder.restEncoder, clock);
const firstStruct = structs[startNewStructs];
// write first struct with an offset
firstStruct.write(encoder, clock - firstStruct.id.clock);
for (let i = startNewStructs + 1; i < structs.length; i++) {
structs[i].write(encoder, 0);
}
};
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
* @param {StructStore} store
* @param {Map<number,number>} _sm
*
* @private
* @function
*/
const writeClientsStructs = (encoder, store, _sm) => {
// we filter all valid _sm entries into sm
const sm = new Map();
_sm.forEach((clock, client) => {
// only write if new structs are available
if (getState(store, client) > clock) {
sm.set(client, clock);
}
});
getStateVector(store).forEach((_clock, client) => {
if (!_sm.has(client)) {
sm.set(client, 0);
}
});
// write # states that were updated
encoding.writeVarUint(encoder.restEncoder, sm.size);
// Write items with higher client ids first
// This heavily improves the conflict algorithm.
array.from(sm.entries()).sort((a, b) => b[0] - a[0]).forEach(([client, clock]) => {
writeStructs(encoder, /** @type {Array<GC|Item>} */ (store.clients.get(client)), client, clock);
});
};
/**
* @param {UpdateDecoderV1 | UpdateDecoderV2} decoder The decoder object to read data from.
* @param {Doc} doc
* @return {Map<number, { i: number, refs: Array<Item | GC> }>}
*
* @private
* @function
*/
const readClientsStructRefs = (decoder, doc) => {
/**
* @type {Map<number, { i: number, refs: Array<Item | GC> }>}
*/
const clientRefs = map.create();
const numOfStateUpdates = decoding.readVarUint(decoder.restDecoder);
for (let i = 0; i < numOfStateUpdates; i++) {
const numberOfStructs = decoding.readVarUint(decoder.restDecoder);
/**
* @type {Array<GC|Item>}
*/
const refs = new Array(numberOfStructs);
const client = decoder.readClient();
let clock = decoding.readVarUint(decoder.restDecoder);
// const start = performance.now()
clientRefs.set(client, { i: 0, refs });
for (let i = 0; i < numberOfStructs; i++) {
const info = decoder.readInfo();
switch (binary.BITS5 & info) {
case 0: { // GC
const len = decoder.readLen();
refs[i] = new GC(createID(client, clock), len);
clock += len;
break
}
case 10: { // Skip Struct (nothing to apply)
// @todo we could reduce the amount of checks by adding Skip struct to clientRefs so we know that something is missing.
const len = decoding.readVarUint(decoder.restDecoder);
refs[i] = new Skip(createID(client, clock), len);
clock += len;
break
}
default: { // Item with content
/**
* The optimized implementation doesn't use any variables because inlining variables is faster.
* Below a non-optimized version is shown that implements the basic algorithm with
* a few comments
*/
const cantCopyParentInfo = (info & (binary.BIT7 | binary.BIT8)) === 0;
// If parent = null and neither left nor right are defined, then we know that `parent` is child of `y`
// and we read the next string as parentYKey.
// It indicates how we store/retrieve parent from `y.share`
// @type {string|null}
const struct = new Item(
createID(client, clock),
null, // left
(info & binary.BIT8) === binary.BIT8 ? decoder.readLeftID() : null, // origin
null, // right
(info & binary.BIT7) === binary.BIT7 ? decoder.readRightID() : null, // right origin
cantCopyParentInfo ? (decoder.readParentInfo() ? doc.get(decoder.readString()) : decoder.readLeftID()) : null, // parent
cantCopyParentInfo && (info & binary.BIT6) === binary.BIT6 ? decoder.readString() : null, // parentSub
readItemContent(decoder, info) // item content
);
/* A non-optimized implementation of the above algorithm:
// The item that was originally to the left of this item.
const origin = (info & binary.BIT8) === binary.BIT8 ? decoder.readLeftID() : null
// The item that was originally to the right of this item.
const rightOrigin = (info & binary.BIT7) === binary.BIT7 ? decoder.readRightID() : null
const cantCopyParentInfo = (info & (binary.BIT7 | binary.BIT8)) === 0
const hasParentYKey = cantCopyParentInfo ? decoder.readParentInfo() : false
// If parent = null and neither left nor right are defined, then we know that `parent` is child of `y`
// and we read the next string as parentYKey.
// It indicates how we store/retrieve parent from `y.share`
// @type {string|null}
const parentYKey = cantCopyParentInfo && hasParentYKey ? decoder.readString() : null
const struct = new Item(
createID(client, clock),
null, // left
origin, // origin
null, // right
rightOrigin, // right origin
cantCopyParentInfo && !hasParentYKey ? decoder.readLeftID() : (parentYKey !== null ? doc.get(parentYKey) : null), // parent
cantCopyParentInfo && (info & binary.BIT6) === binary.BIT6 ? decoder.readString() : null, // parentSub
readItemContent(decoder, info) // item content
)
*/
refs[i] = struct;
clock += struct.length;
}
}
}
// console.log('time to read: ', performance.now() - start) // @todo remove
}
return clientRefs
};
/**
* Resume computing structs generated by struct readers.
*
* While there is something to do, we integrate structs in this order
* 1. top element on stack, if stack is not empty
* 2. next element from current struct reader (if empty, use next struct reader)
*
* If struct causally depends on another struct (ref.missing), we put next reader of
* `ref.id.client` on top of stack.
*
* At some point we find a struct that has no causal dependencies,
* then we start emptying the stack.
*
* It is not possible to have circles: i.e. struct1 (from client1) depends on struct2 (from client2)
* depends on struct3 (from client1). Therefore the max stack size is eqaul to `structReaders.length`.
*
* This method is implemented in a way so that we can resume computation if this update
* causally depends on another update.
*
* @param {Transaction} transaction
* @param {StructStore} store
* @param {Map<number, { i: number, refs: (GC | Item)[] }>} clientsStructRefs
* @return { null | { update: Uint8Array, missing: Map<number,number> } }
*
* @private
* @function
*/
const integrateStructs = (transaction, store, clientsStructRefs) => {
/**
* @type {Array<Item | GC>}
*/
const stack = [];
// sort them so that we take the higher id first, in case of conflicts the lower id will probably not conflict with the id from the higher user.
let clientsStructRefsIds = array.from(clientsStructRefs.keys()).sort((a, b) => a - b);
if (clientsStructRefsIds.length === 0) {
return null
}
const getNextStructTarget = () => {
if (clientsStructRefsIds.length === 0) {
return null
}
let nextStructsTarget = /** @type {{i:number,refs:Array<GC|Item>}} */ (clientsStructRefs.get(clientsStructRefsIds[clientsStructRefsIds.length - 1]));
while (nextStructsTarget.refs.length === nextStructsTarget.i) {
clientsStructRefsIds.pop();
if (clientsStructRefsIds.length > 0) {
nextStructsTarget = /** @type {{i:number,refs:Array<GC|Item>}} */ (clientsStructRefs.get(clientsStructRefsIds[clientsStructRefsIds.length - 1]));
} else {
return null
}
}
return nextStructsTarget
};
let curStructsTarget = getNextStructTarget();
if (curStructsTarget === null) {
return null
}
/**
* @type {StructStore}
*/
const restStructs = new StructStore();
const missingSV = new Map();
/**
* @param {number} client
* @param {number} clock
*/
const updateMissingSv = (client, clock) => {
const mclock = missingSV.get(client);
if (mclock == null || mclock > clock) {
missingSV.set(client, clock);
}
};
/**
* @type {GC|Item}
*/
let stackHead = /** @type {any} */ (curStructsTarget).refs[/** @type {any} */ (curStructsTarget).i++];
// caching the state because it is used very often
const state = new Map();
const addStackToRestSS = () => {
for (const item of stack) {
const client = item.id.client;
const unapplicableItems = clientsStructRefs.get(client);
if (unapplicableItems) {
// decrement because we weren't able to apply previous operation
unapplicableItems.i--;
restStructs.clients.set(client, unapplicableItems.refs.slice(unapplicableItems.i));
clientsStructRefs.delete(client);
unapplicableItems.i = 0;
unapplicableItems.refs = [];
} else {
// item was the last item on clientsStructRefs and the field was already cleared. Add item to restStructs and continue
restStructs.clients.set(client, [item]);
}
// remove client from clientsStructRefsIds to prevent users from applying the same update again
clientsStructRefsIds = clientsStructRefsIds.filter(c => c !== client);
}
stack.length = 0;
};
// iterate over all struct readers until we are done
while (true) {
if (stackHead.constructor !== Skip) {
const localClock = map.setIfUndefined(state, stackHead.id.client, () => getState(store, stackHead.id.client));
const offset = localClock - stackHead.id.clock;
if (offset < 0) {
// update from the same client is missing
stack.push(stackHead);
updateMissingSv(stackHead.id.client, stackHead.id.clock - 1);
// hid a dead wall, add all items from stack to restSS
addStackToRestSS();
} else {
const missing = stackHead.getMissing(transaction, store);
if (missing !== null) {
stack.push(stackHead);
// get the struct reader that has the missing struct
/**
* @type {{ refs: Array<GC|Item>, i: number }}
*/
const structRefs = clientsStructRefs.get(/** @type {number} */ (missing)) || { refs: [], i: 0 };
if (structRefs.refs.length === structRefs.i) {
// This update message causally depends on another update message that doesn't exist yet
updateMissingSv(/** @type {number} */ (missing), getState(store, missing));
addStackToRestSS();
} else {
stackHead = structRefs.refs[structRefs.i++];
continue
}
} else if (offset === 0 || offset < stackHead.length) {
// all fine, apply the stackhead
stackHead.integrate(transaction, offset);
state.set(stackHead.id.client, stackHead.id.clock + stackHead.length);
}
}
}
// iterate to next stackHead
if (stack.length > 0) {
stackHead = /** @type {GC|Item} */ (stack.pop());
} else if (curStructsTarget !== null && curStructsTarget.i < curStructsTarget.refs.length) {
stackHead = /** @type {GC|Item} */ (curStructsTarget.refs[curStructsTarget.i++]);
} else {
curStructsTarget = getNextStructTarget();
if (curStructsTarget === null) {
// we are done!
break
} else {
stackHead = /** @type {GC|Item} */ (curStructsTarget.refs[curStructsTarget.i++]);
}
}
}
if (restStructs.clients.size > 0) {
const encoder = new UpdateEncoderV2();
writeClientsStructs(encoder, restStructs, new Map());
// write empty deleteset
// writeDeleteSet(encoder, new DeleteSet())
encoding.writeVarUint(encoder.restEncoder, 0); // => no need for an extra function call, just write 0 deletes
return { missing: missingSV, update: encoder.toUint8Array() }
}
return null
};
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
* @param {Transaction} transaction
*
* @private
* @function
*/
const writeStructsFromTransaction = (encoder, transaction) => writeClientsStructs(encoder, transaction.doc.store, transaction.beforeState);
/**
* Read and apply a document update.
*
* This function has the same effect as `applyUpdate` but accepts a decoder.
*
* @param {decoding.Decoder} decoder
* @param {Doc} ydoc
* @param {any} [transactionOrigin] This will be stored on `transaction.origin` and `.on('update', (update, origin))`
* @param {UpdateDecoderV1 | UpdateDecoderV2} [structDecoder]
*
* @function
*/
const readUpdateV2 = (decoder, ydoc, transactionOrigin, structDecoder = new UpdateDecoderV2(decoder)) =>
transact(ydoc, transaction => {
// force that transaction.local is set to non-local
transaction.local = false;
let retry = false;
const doc = transaction.doc;
const store = doc.store;
// let start = performance.now()
const ss = readClientsStructRefs(structDecoder, doc);
// console.log('time to read structs: ', performance.now() - start) // @todo remove
// start = performance.now()
// console.log('time to merge: ', performance.now() - start) // @todo remove
// start = performance.now()
const restStructs = integrateStructs(transaction, store, ss);
const pending = store.pendingStructs;
if (pending) {
// check if we can apply something
for (const [client, clock] of pending.missing) {
if (clock < getState(store, client)) {
retry = true;
break
}
}
if (restStructs) {
// merge restStructs into store.pending
for (const [client, clock] of restStructs.missing) {
const mclock = pending.missing.get(client);
if (mclock == null || mclock > clock) {
pending.missing.set(client, clock);
}
}
pending.update = mergeUpdatesV2([pending.update, restStructs.update]);
}
} else {
store.pendingStructs = restStructs;
}
// console.log('time to integrate: ', performance.now() - start) // @todo remove
// start = performance.now()
const dsRest = readAndApplyDeleteSet(structDecoder, transaction, store);
if (store.pendingDs) {
// @todo we could make a lower-bound state-vector check as we do above
const pendingDSUpdate = new UpdateDecoderV2(decoding.createDecoder(store.pendingDs));
decoding.readVarUint(pendingDSUpdate.restDecoder); // read 0 structs, because we only encode deletes in pendingdsupdate
const dsRest2 = readAndApplyDeleteSet(pendingDSUpdate, transaction, store);
if (dsRest && dsRest2) {
// case 1: ds1 != null && ds2 != null
store.pendingDs = mergeUpdatesV2([dsRest, dsRest2]);
} else {
// case 2: ds1 != null
// case 3: ds2 != null
// case 4: ds1 == null && ds2 == null
store.pendingDs = dsRest || dsRest2;
}
} else {
// Either dsRest == null && pendingDs == null OR dsRest != null
store.pendingDs = dsRest;
}
// console.log('time to cleanup: ', performance.now() - start) // @todo remove
// start = performance.now()
// console.log('time to resume delete readers: ', performance.now() - start) // @todo remove
// start = performance.now()
if (retry) {
const update = /** @type {{update: Uint8Array}} */ (store.pendingStructs).update;
store.pendingStructs = null;
applyUpdateV2(transaction.doc, update);
}
}, transactionOrigin, false);
/**
* Read and apply a document update.
*
* This function has the same effect as `applyUpdate` but accepts a decoder.
*
* @param {decoding.Decoder} decoder
* @param {Doc} ydoc
* @param {any} [transactionOrigin] This will be stored on `transaction.origin` and `.on('update', (update, origin))`
*
* @function
*/
const readUpdate = (decoder, ydoc, transactionOrigin) => readUpdateV2(decoder, ydoc, transactionOrigin, new UpdateDecoderV1(decoder));
/**
* Apply a document update created by, for example, `y.on('update', update => ..)` or `update = encodeStateAsUpdate()`.
*
* This function has the same effect as `readUpdate` but accepts an Uint8Array instead of a Decoder.
*
* @param {Doc} ydoc
* @param {Uint8Array} update
* @param {any} [transactionOrigin] This will be stored on `transaction.origin` and `.on('update', (update, origin))`
* @param {typeof UpdateDecoderV1 | typeof UpdateDecoderV2} [YDecoder]
*
* @function
*/
const applyUpdateV2 = (ydoc, update, transactionOrigin, YDecoder = UpdateDecoderV2) => {
const decoder = decoding.createDecoder(update);
readUpdateV2(decoder, ydoc, transactionOrigin, new YDecoder(decoder));
};
/**
* Apply a document update created by, for example, `y.on('update', update => ..)` or `update = encodeStateAsUpdate()`.
*
* This function has the same effect as `readUpdate` but accepts an Uint8Array instead of a Decoder.
*
* @param {Doc} ydoc
* @param {Uint8Array} update
* @param {any} [transactionOrigin] This will be stored on `transaction.origin` and `.on('update', (update, origin))`
*
* @function
*/
const applyUpdate = (ydoc, update, transactionOrigin) => applyUpdateV2(ydoc, update, transactionOrigin, UpdateDecoderV1);
/**
* Write all the document as a single update message. If you specify the state of the remote client (`targetStateVector`) it will
* only write the operations that are missing.
*
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
* @param {Doc} doc
* @param {Map<number,number>} [targetStateVector] The state of the target that receives the update. Leave empty to write all known structs
*
* @function
*/
const writeStateAsUpdate = (encoder, doc, targetStateVector = new Map()) => {
writeClientsStructs(encoder, doc.store, targetStateVector);
writeDeleteSet(encoder, createDeleteSetFromStructStore(doc.store));
};
/**
* Write all the document as a single update message that can be applied on the remote document. If you specify the state of the remote client (`targetState`) it will
* only write the operations that are missing.
*
* Use `writeStateAsUpdate` instead if you are working with lib0/encoding.js#Encoder
*
* @param {Doc} doc
* @param {Uint8Array} [encodedTargetStateVector] The state of the target that receives the update. Leave empty to write all known structs
* @param {UpdateEncoderV1 | UpdateEncoderV2} [encoder]
* @return {Uint8Array}
*
* @function
*/
const encodeStateAsUpdateV2 = (doc, encodedTargetStateVector = new Uint8Array([0]), encoder = new UpdateEncoderV2()) => {
const targetStateVector = decodeStateVector(encodedTargetStateVector);
writeStateAsUpdate(encoder, doc, targetStateVector);
const updates = [encoder.toUint8Array()];
// also add the pending updates (if there are any)
if (doc.store.pendingDs) {
updates.push(doc.store.pendingDs);
}
if (doc.store.pendingStructs) {
updates.push(diffUpdateV2(doc.store.pendingStructs.update, encodedTargetStateVector));
}
if (updates.length > 1) {
if (encoder.constructor === UpdateEncoderV1) {
return mergeUpdates(updates.map((update, i) => i === 0 ? update : convertUpdateFormatV2ToV1(update)))
} else if (encoder.constructor === UpdateEncoderV2) {
return mergeUpdatesV2(updates)
}
}
return updates[0]
};
/**
* Write all the document as a single update message that can be applied on the remote document. If you specify the state of the remote client (`targetState`) it will
* only write the operations that are missing.
*
* Use `writeStateAsUpdate` instead if you are working with lib0/encoding.js#Encoder
*
* @param {Doc} doc
* @param {Uint8Array} [encodedTargetStateVector] The state of the target that receives the update. Leave empty to write all known structs
* @return {Uint8Array}
*
* @function
*/
const encodeStateAsUpdate = (doc, encodedTargetStateVector) => encodeStateAsUpdateV2(doc, encodedTargetStateVector, new UpdateEncoderV1());
/**
* Read state vector from Decoder and return as Map
*
* @param {DSDecoderV1 | DSDecoderV2} decoder
* @return {Map<number,number>} Maps `client` to the number next expected `clock` from that client.
*
* @function
*/
const readStateVector = decoder => {
const ss = new Map();
const ssLength = decoding.readVarUint(decoder.restDecoder);
for (let i = 0; i < ssLength; i++) {
const client = decoding.readVarUint(decoder.restDecoder);
const clock = decoding.readVarUint(decoder.restDecoder);
ss.set(client, clock);
}
return ss
};
/**
* Read decodedState and return State as Map.
*
* @param {Uint8Array} decodedState
* @return {Map<number,number>} Maps `client` to the number next expected `clock` from that client.
*
* @function
*/
// export const decodeStateVectorV2 = decodedState => readStateVector(new DSDecoderV2(decoding.createDecoder(decodedState)))
/**
* Read decodedState and return State as Map.
*
* @param {Uint8Array} decodedState
* @return {Map<number,number>} Maps `client` to the number next expected `clock` from that client.
*
* @function
*/
const decodeStateVector = decodedState => readStateVector(new DSDecoderV1(decoding.createDecoder(decodedState)));
/**
* @param {DSEncoderV1 | DSEncoderV2} encoder
* @param {Map<number,number>} sv
* @function
*/
const writeStateVector = (encoder, sv) => {
encoding.writeVarUint(encoder.restEncoder, sv.size);
array.from(sv.entries()).sort((a, b) => b[0] - a[0]).forEach(([client, clock]) => {
encoding.writeVarUint(encoder.restEncoder, client); // @todo use a special client decoder that is based on mapping
encoding.writeVarUint(encoder.restEncoder, clock);
});
return encoder
};
/**
* @param {DSEncoderV1 | DSEncoderV2} encoder
* @param {Doc} doc
*
* @function
*/
const writeDocumentStateVector = (encoder, doc) => writeStateVector(encoder, getStateVector(doc.store));
/**
* Encode State as Uint8Array.
*
* @param {Doc|Map<number,number>} doc
* @param {DSEncoderV1 | DSEncoderV2} [encoder]
* @return {Uint8Array}
*
* @function
*/
const encodeStateVectorV2 = (doc, encoder = new DSEncoderV2()) => {
if (doc instanceof Map) {
writeStateVector(encoder, doc);
} else {
writeDocumentStateVector(encoder, doc);
}
return encoder.toUint8Array()
};
/**
* Encode State as Uint8Array.
*
* @param {Doc|Map<number,number>} doc
* @return {Uint8Array}
*
* @function
*/
const encodeStateVector = doc => encodeStateVectorV2(doc, new DSEncoderV1());
/**
* General event handler implementation.
*
* @template ARG0, ARG1
*
* @private
*/
class EventHandler {
constructor () {
/**
* @type {Array<function(ARG0, ARG1):void>}
*/
this.l = [];
}
}
/**
* @template ARG0,ARG1
* @returns {EventHandler<ARG0,ARG1>}
*
* @private
* @function
*/
const createEventHandler = () => new EventHandler();
/**
* Adds an event listener that is called when
* {@link EventHandler#callEventListeners} is called.
*
* @template ARG0,ARG1
* @param {EventHandler<ARG0,ARG1>} eventHandler
* @param {function(ARG0,ARG1):void} f The event handler.
*
* @private
* @function
*/
const addEventHandlerListener = (eventHandler, f) =>
eventHandler.l.push(f);
/**
* Removes an event listener.
*
* @template ARG0,ARG1
* @param {EventHandler<ARG0,ARG1>} eventHandler
* @param {function(ARG0,ARG1):void} f The event handler that was added with
* {@link EventHandler#addEventListener}
*
* @private
* @function
*/
const removeEventHandlerListener = (eventHandler, f) => {
const l = eventHandler.l;
const len = l.length;
eventHandler.l = l.filter(g => f !== g);
if (len === eventHandler.l.length) {
console.error('[yjs] Tried to remove event handler that doesn\'t exist.');
}
};
/**
* Call all event listeners that were added via
* {@link EventHandler#addEventListener}.
*
* @template ARG0,ARG1
* @param {EventHandler<ARG0,ARG1>} eventHandler
* @param {ARG0} arg0
* @param {ARG1} arg1
*
* @private
* @function
*/
const callEventHandlerListeners = (eventHandler, arg0, arg1) =>
f.callAll(eventHandler.l, [arg0, arg1]);
class ID {
/**
* @param {number} client client id
* @param {number} clock unique per client id, continuous number
*/
constructor (client, clock) {
/**
* Client id
* @type {number}
*/
this.client = client;
/**
* unique per client id, continuous number
* @type {number}
*/
this.clock = clock;
}
}
/**
* @param {ID | null} a
* @param {ID | null} b
* @return {boolean}
*
* @function
*/
const compareIDs = (a, b) => a === b || (a !== null && b !== null && a.client === b.client && a.clock === b.clock);
/**
* @param {number} client
* @param {number} clock
*
* @private
* @function
*/
const createID = (client, clock) => new ID(client, clock);
/**
* @param {encoding.Encoder} encoder
* @param {ID} id
*
* @private
* @function
*/
const writeID = (encoder, id) => {
encoding.writeVarUint(encoder, id.client);
encoding.writeVarUint(encoder, id.clock);
};
/**
* Read ID.
* * If first varUint read is 0xFFFFFF a RootID is returned.
* * Otherwise an ID is returned
*
* @param {decoding.Decoder} decoder
* @return {ID}
*
* @private
* @function
*/
const readID = decoder =>
createID(decoding.readVarUint(decoder), decoding.readVarUint(decoder));
/**
* The top types are mapped from y.share.get(keyname) => type.
* `type` does not store any information about the `keyname`.
* This function finds the correct `keyname` for `type` and throws otherwise.
*
* @param {AbstractType<any>} type
* @return {string}
*
* @private
* @function
*/
const findRootTypeKey = type => {
// @ts-ignore _y must be defined, otherwise unexpected case
for (const [key, value] of type.doc.share.entries()) {
if (value === type) {
return key
}
}
throw error.unexpectedCase()
};
/**
* Check if `parent` is a parent of `child`.
*
* @param {AbstractType<any>} parent
* @param {Item|null} child
* @return {Boolean} Whether `parent` is a parent of `child`.
*
* @private
* @function
*/
const isParentOf = (parent, child) => {
while (child !== null) {
if (child.parent === parent) {
return true
}
child = /** @type {AbstractType<any>} */ (child.parent)._item;
}
return false
};
/**
* Convenient helper to log type information.
*
* Do not use in productive systems as the output can be immense!
*
* @param {AbstractType<any>} type
*/
const logType = type => {
const res = [];
let n = type._start;
while (n) {
res.push(n);
n = n.right;
}
console.log('Children: ', res);
console.log('Children content: ', res.filter(m => !m.deleted).map(m => m.content));
};
class PermanentUserData {
/**
* @param {Doc} doc
* @param {YMap<any>} [storeType]
*/
constructor (doc, storeType = doc.getMap('users')) {
/**
* @type {Map<string,DeleteSet>}
*/
const dss = new Map();
this.yusers = storeType;
this.doc = doc;
/**
* Maps from clientid to userDescription
*
* @type {Map<number,string>}
*/
this.clients = new Map();
this.dss = dss;
/**
* @param {YMap<any>} user
* @param {string} userDescription
*/
const initUser = (user, userDescription) => {
/**
* @type {YArray<Uint8Array>}
*/
const ds = user.get('ds');
const ids = user.get('ids');
const addClientId = /** @param {number} clientid */ clientid => this.clients.set(clientid, userDescription);
ds.observe(/** @param {YArrayEvent<any>} event */ event => {
event.changes.added.forEach(item => {
item.content.getContent().forEach(encodedDs => {
if (encodedDs instanceof Uint8Array) {
this.dss.set(userDescription, mergeDeleteSets([this.dss.get(userDescription) || createDeleteSet(), readDeleteSet(new DSDecoderV1(decoding.createDecoder(encodedDs)))]));
}
});
});
});
this.dss.set(userDescription, mergeDeleteSets(ds.map(encodedDs => readDeleteSet(new DSDecoderV1(decoding.createDecoder(encodedDs))))));
ids.observe(/** @param {YArrayEvent<any>} event */ event =>
event.changes.added.forEach(item => item.content.getContent().forEach(addClientId))
);
ids.forEach(addClientId);
};
// observe users
storeType.observe(event => {
event.keysChanged.forEach(userDescription =>
initUser(storeType.get(userDescription), userDescription)
);
});
// add intial data
storeType.forEach(initUser);
}
/**
* @param {Doc} doc
* @param {number} clientid
* @param {string} userDescription
* @param {Object} conf
* @param {function(Transaction, DeleteSet):boolean} [conf.filter]
*/
setUserMapping (doc, clientid, userDescription, { filter = () => true } = {}) {
const users = this.yusers;
let user = users.get(userDescription);
if (!user) {
user = new YMap();
user.set('ids', new YArray());
user.set('ds', new YArray());
users.set(userDescription, user);
}
user.get('ids').push([clientid]);
users.observe(_event => {
setTimeout(() => {
const userOverwrite = users.get(userDescription);
if (userOverwrite !== user) {
// user was overwritten, port all data over to the next user object
// @todo Experiment with Y.Sets here
user = userOverwrite;
// @todo iterate over old type
this.clients.forEach((_userDescription, clientid) => {
if (userDescription === _userDescription) {
user.get('ids').push([clientid]);
}
});
const encoder = new DSEncoderV1();
const ds = this.dss.get(userDescription);
if (ds) {
writeDeleteSet(encoder, ds);
user.get('ds').push([encoder.toUint8Array()]);
}
}
}, 0);
});
doc.on('afterTransaction', /** @param {Transaction} transaction */ transaction => {
setTimeout(() => {
const yds = user.get('ds');
const ds = transaction.deleteSet;
if (transaction.local && ds.clients.size > 0 && filter(transaction, ds)) {
const encoder = new DSEncoderV1();
writeDeleteSet(encoder, ds);
yds.push([encoder.toUint8Array()]);
}
});
});
}
/**
* @param {number} clientid
* @return {any}
*/
getUserByClientId (clientid) {
return this.clients.get(clientid) || null
}
/**
* @param {ID} id
* @return {string | null}
*/
getUserByDeletedId (id) {
for (const [userDescription, ds] of this.dss.entries()) {
if (isDeleted(ds, id)) {
return userDescription
}
}
return null
}
}
/**
* A relative position is based on the Yjs model and is not affected by document changes.
* E.g. If you place a relative position before a certain character, it will always point to this character.
* If you place a relative position at the end of a type, it will always point to the end of the type.
*
* A numeric position is often unsuited for user selections, because it does not change when content is inserted
* before or after.
*
* ```Insert(0, 'x')('a|bc') = 'xa|bc'``` Where | is the relative position.
*
* One of the properties must be defined.
*
* @example
* // Current cursor position is at position 10
* const relativePosition = createRelativePositionFromIndex(yText, 10)
* // modify yText
* yText.insert(0, 'abc')
* yText.delete(3, 10)
* // Compute the cursor position
* const absolutePosition = createAbsolutePositionFromRelativePosition(y, relativePosition)
* absolutePosition.type === yText // => true
* console.log('cursor location is ' + absolutePosition.index) // => cursor location is 3
*
*/
class RelativePosition {
/**
* @param {ID|null} type
* @param {string|null} tname
* @param {ID|null} item
* @param {number} assoc
*/
constructor (type, tname, item, assoc = 0) {
/**
* @type {ID|null}
*/
this.type = type;
/**
* @type {string|null}
*/
this.tname = tname;
/**
* @type {ID | null}
*/
this.item = item;
/**
* A relative position is associated to a specific character. By default
* assoc >= 0, the relative position is associated to the character
* after the meant position.
* I.e. position 1 in 'ab' is associated to character 'b'.
*
* If assoc < 0, then the relative position is associated to the caharacter
* before the meant position.
*
* @type {number}
*/
this.assoc = assoc;
}
}
/**
* @param {RelativePosition} rpos
* @return {any}
*/
const relativePositionToJSON = rpos => {
const json = {};
if (rpos.type) {
json.type = rpos.type;
}
if (rpos.tname) {
json.tname = rpos.tname;
}
if (rpos.item) {
json.item = rpos.item;
}
if (rpos.assoc != null) {
json.assoc = rpos.assoc;
}
return json
};
/**
* @param {any} json
* @return {RelativePosition}
*
* @function
*/
const createRelativePositionFromJSON = json => new RelativePosition(json.type == null ? null : createID(json.type.client, json.type.clock), json.tname ?? null, json.item == null ? null : createID(json.item.client, json.item.clock), json.assoc == null ? 0 : json.assoc);
class AbsolutePosition {
/**
* @param {AbstractType<any>} type
* @param {number} index
* @param {number} [assoc]
*/
constructor (type, index, assoc = 0) {
/**
* @type {AbstractType<any>}
*/
this.type = type;
/**
* @type {number}
*/
this.index = index;
this.assoc = assoc;
}
}
/**
* @param {AbstractType<any>} type
* @param {number} index
* @param {number} [assoc]
*
* @function
*/
const createAbsolutePosition = (type, index, assoc = 0) => new AbsolutePosition(type, index, assoc);
/**
* @param {AbstractType<any>} type
* @param {ID|null} item
* @param {number} [assoc]
*
* @function
*/
const createRelativePosition = (type, item, assoc) => {
let typeid = null;
let tname = null;
if (type._item === null) {
tname = findRootTypeKey(type);
} else {
typeid = createID(type._item.id.client, type._item.id.clock);
}
return new RelativePosition(typeid, tname, item, assoc)
};
/**
* Create a relativePosition based on a absolute position.
*
* @param {AbstractType<any>} type The base type (e.g. YText or YArray).
* @param {number} index The absolute position.
* @param {number} [assoc]
* @return {RelativePosition}
*
* @function
*/
const createRelativePositionFromTypeIndex = (type, index, assoc = 0) => {
let t = type._start;
if (assoc < 0) {
// associated to the left character or the beginning of a type, increment index if possible.
if (index === 0) {
return createRelativePosition(type, null, assoc)
}
index--;
}
while (t !== null) {
if (!t.deleted && t.countable) {
if (t.length > index) {
// case 1: found position somewhere in the linked list
return createRelativePosition(type, createID(t.id.client, t.id.clock + index), assoc)
}
index -= t.length;
}
if (t.right === null && assoc < 0) {
// left-associated position, return last available id
return createRelativePosition(type, t.lastId, assoc)
}
t = t.right;
}
return createRelativePosition(type, null, assoc)
};
/**
* @param {encoding.Encoder} encoder
* @param {RelativePosition} rpos
*
* @function
*/
const writeRelativePosition = (encoder, rpos) => {
const { type, tname, item, assoc } = rpos;
if (item !== null) {
encoding.writeVarUint(encoder, 0);
writeID(encoder, item);
} else if (tname !== null) {
// case 2: found position at the end of the list and type is stored in y.share
encoding.writeUint8(encoder, 1);
encoding.writeVarString(encoder, tname);
} else if (type !== null) {
// case 3: found position at the end of the list and type is attached to an item
encoding.writeUint8(encoder, 2);
writeID(encoder, type);
} else {
throw error.unexpectedCase()
}
encoding.writeVarInt(encoder, assoc);
return encoder
};
/**
* @param {RelativePosition} rpos
* @return {Uint8Array}
*/
const encodeRelativePosition = rpos => {
const encoder = encoding.createEncoder();
writeRelativePosition(encoder, rpos);
return encoding.toUint8Array(encoder)
};
/**
* @param {decoding.Decoder} decoder
* @return {RelativePosition}
*
* @function
*/
const readRelativePosition = decoder => {
let type = null;
let tname = null;
let itemID = null;
switch (decoding.readVarUint(decoder)) {
case 0:
// case 1: found position somewhere in the linked list
itemID = readID(decoder);
break
case 1:
// case 2: found position at the end of the list and type is stored in y.share
tname = decoding.readVarString(decoder);
break
case 2: {
// case 3: found position at the end of the list and type is attached to an item
type = readID(decoder);
}
}
const assoc = decoding.hasContent(decoder) ? decoding.readVarInt(decoder) : 0;
return new RelativePosition(type, tname, itemID, assoc)
};
/**
* @param {Uint8Array} uint8Array
* @return {RelativePosition}
*/
const decodeRelativePosition = uint8Array => readRelativePosition(decoding.createDecoder(uint8Array));
/**
* Transform a relative position to an absolute position.
*
* If you want to share the relative position with other users, you should set
* `followUndoneDeletions` to false to get consistent results across all clients.
*
* When calculating the absolute position, we try to follow the "undone deletions". This yields
* better results for the user who performed undo. However, only the user who performed the undo
* will get the better results, the other users don't know which operations recreated a deleted
* range of content. There is more information in this ticket: https://github.com/yjs/yjs/issues/638
*
* @param {RelativePosition} rpos
* @param {Doc} doc
* @param {boolean} followUndoneDeletions - whether to follow undone deletions - see https://github.com/yjs/yjs/issues/638
* @return {AbsolutePosition|null}
*
* @function
*/
const createAbsolutePositionFromRelativePosition = (rpos, doc, followUndoneDeletions = true) => {
const store = doc.store;
const rightID = rpos.item;
const typeID = rpos.type;
const tname = rpos.tname;
const assoc = rpos.assoc;
let type = null;
let index = 0;
if (rightID !== null) {
if (getState(store, rightID.client) <= rightID.clock) {
return null
}
const res = followUndoneDeletions ? followRedone(store, rightID) : { item: getItem(store, rightID), diff: 0 };
const right = res.item;
if (!(right instanceof Item)) {
return null
}
type = /** @type {AbstractType<any>} */ (right.parent);
if (type._item === null || !type._item.deleted) {
index = (right.deleted || !right.countable) ? 0 : (res.diff + (assoc >= 0 ? 0 : 1)); // adjust position based on left association if necessary
let n = right.left;
while (n !== null) {
if (!n.deleted && n.countable) {
index += n.length;
}
n = n.left;
}
}
} else {
if (tname !== null) {
type = doc.get(tname);
} else if (typeID !== null) {
if (getState(store, typeID.client) <= typeID.clock) {
// type does not exist yet
return null
}
const { item } = followUndoneDeletions ? followRedone(store, typeID) : { item: getItem(store, typeID) };
if (item instanceof Item && item.content instanceof ContentType) {
type = item.content.type;
} else {
// struct is garbage collected
return null
}
} else {
throw error.unexpectedCase()
}
if (assoc >= 0) {
index = type._length;
} else {
index = 0;
}
}
return createAbsolutePosition(type, index, rpos.assoc)
};
/**
* @param {RelativePosition|null} a
* @param {RelativePosition|null} b
* @return {boolean}
*
* @function
*/
const compareRelativePositions = (a, b) => a === b || (
a !== null && b !== null && a.tname === b.tname && compareIDs(a.item, b.item) && compareIDs(a.type, b.type) && a.assoc === b.assoc
);
class Snapshot {
/**
* @param {DeleteSet} ds
* @param {Map<number,number>} sv state map
*/
constructor (ds, sv) {
/**
* @type {DeleteSet}
*/
this.ds = ds;
/**
* State Map
* @type {Map<number,number>}
*/
this.sv = sv;
}
}
/**
* @param {Snapshot} snap1
* @param {Snapshot} snap2
* @return {boolean}
*/
const equalSnapshots = (snap1, snap2) => {
const ds1 = snap1.ds.clients;
const ds2 = snap2.ds.clients;
const sv1 = snap1.sv;
const sv2 = snap2.sv;
if (sv1.size !== sv2.size || ds1.size !== ds2.size) {
return false
}
for (const [key, value] of sv1.entries()) {
if (sv2.get(key) !== value) {
return false
}
}
for (const [client, dsitems1] of ds1.entries()) {
const dsitems2 = ds2.get(client) || [];
if (dsitems1.length !== dsitems2.length) {
return false
}
for (let i = 0; i < dsitems1.length; i++) {
const dsitem1 = dsitems1[i];
const dsitem2 = dsitems2[i];
if (dsitem1.clock !== dsitem2.clock || dsitem1.len !== dsitem2.len) {
return false
}
}
}
return true
};
/**
* @param {Snapshot} snapshot
* @param {DSEncoderV1 | DSEncoderV2} [encoder]
* @return {Uint8Array}
*/
const encodeSnapshotV2 = (snapshot, encoder = new DSEncoderV2()) => {
writeDeleteSet(encoder, snapshot.ds);
writeStateVector(encoder, snapshot.sv);
return encoder.toUint8Array()
};
/**
* @param {Snapshot} snapshot
* @return {Uint8Array}
*/
const encodeSnapshot = snapshot => encodeSnapshotV2(snapshot, new DSEncoderV1());
/**
* @param {Uint8Array} buf
* @param {DSDecoderV1 | DSDecoderV2} [decoder]
* @return {Snapshot}
*/
const decodeSnapshotV2 = (buf, decoder = new DSDecoderV2(decoding.createDecoder(buf))) => {
return new Snapshot(readDeleteSet(decoder), readStateVector(decoder))
};
/**
* @param {Uint8Array} buf
* @return {Snapshot}
*/
const decodeSnapshot = buf => decodeSnapshotV2(buf, new DSDecoderV1(decoding.createDecoder(buf)));
/**
* @param {DeleteSet} ds
* @param {Map<number,number>} sm
* @return {Snapshot}
*/
const createSnapshot = (ds, sm) => new Snapshot(ds, sm);
const emptySnapshot = createSnapshot(createDeleteSet(), new Map());
/**
* @param {Doc} doc
* @return {Snapshot}
*/
const snapshot = doc => createSnapshot(createDeleteSetFromStructStore(doc.store), getStateVector(doc.store));
/**
* @param {Item} item
* @param {Snapshot|undefined} snapshot
*
* @protected
* @function
*/
const isVisible = (item, snapshot) => snapshot === undefined
? !item.deleted
: snapshot.sv.has(item.id.client) && (snapshot.sv.get(item.id.client) || 0) > item.id.clock && !isDeleted(snapshot.ds, item.id);
/**
* @param {Transaction} transaction
* @param {Snapshot} snapshot
*/
const splitSnapshotAffectedStructs = (transaction, snapshot) => {
const meta = map.setIfUndefined(transaction.meta, splitSnapshotAffectedStructs, set.create);
const store = transaction.doc.store;
// check if we already split for this snapshot
if (!meta.has(snapshot)) {
snapshot.sv.forEach((clock, client) => {
if (clock < getState(store, client)) {
getItemCleanStart(transaction, createID(client, clock));
}
});
iterateDeletedStructs(transaction, snapshot.ds, _item => {});
meta.add(snapshot);
}
};
/**
* @example
* const ydoc = new Y.Doc({ gc: false })
* ydoc.getText().insert(0, 'world!')
* const snapshot = Y.snapshot(ydoc)
* ydoc.getText().insert(0, 'hello ')
* const restored = Y.createDocFromSnapshot(ydoc, snapshot)
* assert(restored.getText().toString() === 'world!')
*
* @param {Doc} originDoc
* @param {Snapshot} snapshot
* @param {Doc} [newDoc] Optionally, you may define the Yjs document that receives the data from originDoc
* @return {Doc}
*/
const createDocFromSnapshot = (originDoc, snapshot, newDoc = new Doc()) => {
if (originDoc.gc) {
// we should not try to restore a GC-ed document, because some of the restored items might have their content deleted
throw new Error('Garbage-collection must be disabled in `originDoc`!')
}
const { sv, ds } = snapshot;
const encoder = new UpdateEncoderV2();
originDoc.transact(transaction => {
let size = 0;
sv.forEach(clock => {
if (clock > 0) {
size++;
}
});
encoding.writeVarUint(encoder.restEncoder, size);
// splitting the structs before writing them to the encoder
for (const [client, clock] of sv) {
if (clock === 0) {
continue
}
if (clock < getState(originDoc.store, client)) {
getItemCleanStart(transaction, createID(client, clock));
}
const structs = originDoc.store.clients.get(client) || [];
const lastStructIndex = findIndexSS(structs, clock - 1);
// write # encoded structs
encoding.writeVarUint(encoder.restEncoder, lastStructIndex + 1);
encoder.writeClient(client);
// first clock written is 0
encoding.writeVarUint(encoder.restEncoder, 0);
for (let i = 0; i <= lastStructIndex; i++) {
structs[i].write(encoder, 0);
}
}
writeDeleteSet(encoder, ds);
});
applyUpdateV2(newDoc, encoder.toUint8Array(), 'snapshot');
return newDoc
};
/**
* @param {Snapshot} snapshot
* @param {Uint8Array} update
* @param {typeof UpdateDecoderV2 | typeof UpdateDecoderV1} [YDecoder]
*/
const snapshotContainsUpdateV2 = (snapshot, update, YDecoder = UpdateDecoderV2) => {
const updateDecoder = new YDecoder(decoding.createDecoder(update));
const lazyDecoder = new LazyStructReader(updateDecoder, false);
for (let curr = lazyDecoder.curr; curr !== null; curr = lazyDecoder.next()) {
if ((snapshot.sv.get(curr.id.client) || 0) < curr.id.clock + curr.length) {
return false
}
}
const mergedDS = mergeDeleteSets([snapshot.ds, readDeleteSet(updateDecoder)]);
return equalDeleteSets(snapshot.ds, mergedDS)
};
/**
* @param {Snapshot} snapshot
* @param {Uint8Array} update
*/
const snapshotContainsUpdate = (snapshot, update) => snapshotContainsUpdateV2(snapshot, update, UpdateDecoderV1);
class StructStore {
constructor () {
/**
* @type {Map<number,Array<GC|Item>>}
*/
this.clients = new Map();
/**
* @type {null | { missing: Map<number, number>, update: Uint8Array }}
*/
this.pendingStructs = null;
/**
* @type {null | Uint8Array}
*/
this.pendingDs = null;
}
}
/**
* Return the states as a Map<client,clock>.
* Note that clock refers to the next expected clock id.
*
* @param {StructStore} store
* @return {Map<number,number>}
*
* @public
* @function
*/
const getStateVector = store => {
const sm = new Map();
store.clients.forEach((structs, client) => {
const struct = structs[structs.length - 1];
sm.set(client, struct.id.clock + struct.length);
});
return sm
};
/**
* @param {StructStore} store
* @param {number} client
* @return {number}
*
* @public
* @function
*/
const getState = (store, client) => {
const structs = store.clients.get(client);
if (structs === undefined) {
return 0
}
const lastStruct = structs[structs.length - 1];
return lastStruct.id.clock + lastStruct.length
};
/**
* @param {StructStore} store
* @param {GC|Item} struct
*
* @private
* @function
*/
const addStruct = (store, struct) => {
let structs = store.clients.get(struct.id.client);
if (structs === undefined) {
structs = [];
store.clients.set(struct.id.client, structs);
} else {
const lastStruct = structs[structs.length - 1];
if (lastStruct.id.clock + lastStruct.length !== struct.id.clock) {
throw error.unexpectedCase()
}
}
structs.push(struct);
};
/**
* Perform a binary search on a sorted array
* @param {Array<Item|GC>} structs
* @param {number} clock
* @return {number}
*
* @private
* @function
*/
const findIndexSS = (structs, clock) => {
let left = 0;
let right = structs.length - 1;
let mid = structs[right];
let midclock = mid.id.clock;
if (midclock === clock) {
return right
}
// @todo does it even make sense to pivot the search?
// If a good split misses, it might actually increase the time to find the correct item.
// Currently, the only advantage is that search with pivoting might find the item on the first try.
let midindex = math.floor((clock / (midclock + mid.length - 1)) * right); // pivoting the search
while (left <= right) {
mid = structs[midindex];
midclock = mid.id.clock;
if (midclock <= clock) {
if (clock < midclock + mid.length) {
return midindex
}
left = midindex + 1;
} else {
right = midindex - 1;
}
midindex = math.floor((left + right) / 2);
}
// Always check state before looking for a struct in StructStore
// Therefore the case of not finding a struct is unexpected
throw error.unexpectedCase()
};
/**
* Expects that id is actually in store. This function throws or is an infinite loop otherwise.
*
* @param {StructStore} store
* @param {ID} id
* @return {GC|Item}
*
* @private
* @function
*/
const find = (store, id) => {
/**
* @type {Array<GC|Item>}
*/
// @ts-ignore
const structs = store.clients.get(id.client);
return structs[findIndexSS(structs, id.clock)]
};
/**
* Expects that id is actually in store. This function throws or is an infinite loop otherwise.
* @private
* @function
*/
const getItem = /** @type {function(StructStore,ID):Item} */ (find);
/**
* @param {Transaction} transaction
* @param {Array<Item|GC>} structs
* @param {number} clock
*/
const findIndexCleanStart = (transaction, structs, clock) => {
const index = findIndexSS(structs, clock);
const struct = structs[index];
if (struct.id.clock < clock && struct instanceof Item) {
structs.splice(index + 1, 0, splitItem(transaction, struct, clock - struct.id.clock));
return index + 1
}
return index
};
/**
* Expects that id is actually in store. This function throws or is an infinite loop otherwise.
*
* @param {Transaction} transaction
* @param {ID} id
* @return {Item}
*
* @private
* @function
*/
const getItemCleanStart = (transaction, id) => {
const structs = /** @type {Array<Item>} */ (transaction.doc.store.clients.get(id.client));
return structs[findIndexCleanStart(transaction, structs, id.clock)]
};
/**
* Expects that id is actually in store. This function throws or is an infinite loop otherwise.
*
* @param {Transaction} transaction
* @param {StructStore} store
* @param {ID} id
* @return {Item}
*
* @private
* @function
*/
const getItemCleanEnd = (transaction, store, id) => {
/**
* @type {Array<Item>}
*/
// @ts-ignore
const structs = store.clients.get(id.client);
const index = findIndexSS(structs, id.clock);
const struct = structs[index];
if (id.clock !== struct.id.clock + struct.length - 1 && struct.constructor !== GC) {
structs.splice(index + 1, 0, splitItem(transaction, struct, id.clock - struct.id.clock + 1));
}
return struct
};
/**
* Replace `item` with `newitem` in store
* @param {StructStore} store
* @param {GC|Item} struct
* @param {GC|Item} newStruct
*
* @private
* @function
*/
const replaceStruct = (store, struct, newStruct) => {
const structs = /** @type {Array<GC|Item>} */ (store.clients.get(struct.id.client));
structs[findIndexSS(structs, struct.id.clock)] = newStruct;
};
/**
* Iterate over a range of structs
*
* @param {Transaction} transaction
* @param {Array<Item|GC>} structs
* @param {number} clockStart Inclusive start
* @param {number} len
* @param {function(GC|Item):void} f
*
* @function
*/
const iterateStructs = (transaction, structs, clockStart, len, f) => {
if (len === 0) {
return
}
const clockEnd = clockStart + len;
let index = findIndexCleanStart(transaction, structs, clockStart);
let struct;
do {
struct = structs[index++];
if (clockEnd < struct.id.clock + struct.length) {
findIndexCleanStart(transaction, structs, clockEnd);
}
f(struct);
} while (index < structs.length && structs[index].id.clock < clockEnd)
};
/**
* A transaction is created for every change on the Yjs model. It is possible
* to bundle changes on the Yjs model in a single transaction to
* minimize the number on messages sent and the number of observer calls.
* If possible the user of this library should bundle as many changes as
* possible. Here is an example to illustrate the advantages of bundling:
*
* @example
* const ydoc = new Y.Doc()
* const map = ydoc.getMap('map')
* // Log content when change is triggered
* map.observe(() => {
* console.log('change triggered')
* })
* // Each change on the map type triggers a log message:
* map.set('a', 0) // => "change triggered"
* map.set('b', 0) // => "change triggered"
* // When put in a transaction, it will trigger the log after the transaction:
* ydoc.transact(() => {
* map.set('a', 1)
* map.set('b', 1)
* }) // => "change triggered"
*
* @public
*/
class Transaction {
/**
* @param {Doc} doc
* @param {any} origin
* @param {boolean} local
*/
constructor (doc, origin, local) {
/**
* The Yjs instance.
* @type {Doc}
*/
this.doc = doc;
/**
* Describes the set of deleted items by ids
* @type {DeleteSet}
*/
this.deleteSet = new DeleteSet();
/**
* Holds the state before the transaction started.
* @type {Map<Number,Number>}
*/
this.beforeState = getStateVector(doc.store);
/**
* Holds the state after the transaction.
* @type {Map<Number,Number>}
*/
this.afterState = new Map();
/**
* All types that were directly modified (property added or child
* inserted/deleted). New types are not included in this Set.
* Maps from type to parentSubs (`item.parentSub = null` for YArray)
* @type {Map<AbstractType<YEvent<any>>,Set<String|null>>}
*/
this.changed = new Map();
/**
* Stores the events for the types that observe also child elements.
* It is mainly used by `observeDeep`.
* @type {Map<AbstractType<YEvent<any>>,Array<YEvent<any>>>}
*/
this.changedParentTypes = new Map();
/**
* @type {Array<AbstractStruct>}
*/
this._mergeStructs = [];
/**
* @type {any}
*/
this.origin = origin;
/**
* Stores meta information on the transaction
* @type {Map<any,any>}
*/
this.meta = new Map();
/**
* Whether this change originates from this doc.
* @type {boolean}
*/
this.local = local;
/**
* @type {Set<Doc>}
*/
this.subdocsAdded = new Set();
/**
* @type {Set<Doc>}
*/
this.subdocsRemoved = new Set();
/**
* @type {Set<Doc>}
*/
this.subdocsLoaded = new Set();
/**
* @type {boolean}
*/
this._needFormattingCleanup = false;
}
}
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
* @param {Transaction} transaction
* @return {boolean} Whether data was written.
*/
const writeUpdateMessageFromTransaction = (encoder, transaction) => {
if (transaction.deleteSet.clients.size === 0 && !map.any(transaction.afterState, (clock, client) => transaction.beforeState.get(client) !== clock)) {
return false
}
sortAndMergeDeleteSet(transaction.deleteSet);
writeStructsFromTransaction(encoder, transaction);
writeDeleteSet(encoder, transaction.deleteSet);
return true
};
/**
* If `type.parent` was added in current transaction, `type` technically
* did not change, it was just added and we should not fire events for `type`.
*
* @param {Transaction} transaction
* @param {AbstractType<YEvent<any>>} type
* @param {string|null} parentSub
*/
const addChangedTypeToTransaction = (transaction, type, parentSub) => {
const item = type._item;
if (item === null || (item.id.clock < (transaction.beforeState.get(item.id.client) || 0) && !item.deleted)) {
map.setIfUndefined(transaction.changed, type, set.create).add(parentSub);
}
};
/**
* @param {Array<AbstractStruct>} structs
* @param {number} pos
* @return {number} # of merged structs
*/
const tryToMergeWithLefts = (structs, pos) => {
let right = structs[pos];
let left = structs[pos - 1];
let i = pos;
for (; i > 0; right = left, left = structs[--i - 1]) {
if (left.deleted === right.deleted && left.constructor === right.constructor) {
if (left.mergeWith(right)) {
if (right instanceof Item && right.parentSub !== null && /** @type {AbstractType<any>} */ (right.parent)._map.get(right.parentSub) === right) {
/** @type {AbstractType<any>} */ (right.parent)._map.set(right.parentSub, /** @type {Item} */ (left));
}
continue
}
}
break
}
const merged = pos - i;
if (merged) {
// remove all merged structs from the array
structs.splice(pos + 1 - merged, merged);
}
return merged
};
/**
* @param {DeleteSet} ds
* @param {StructStore} store
* @param {function(Item):boolean} gcFilter
*/
const tryGcDeleteSet = (ds, store, gcFilter) => {
for (const [client, deleteItems] of ds.clients.entries()) {
const structs = /** @type {Array<GC|Item>} */ (store.clients.get(client));
for (let di = deleteItems.length - 1; di >= 0; di--) {
const deleteItem = deleteItems[di];
const endDeleteItemClock = deleteItem.clock + deleteItem.len;
for (
let si = findIndexSS(structs, deleteItem.clock), struct = structs[si];
si < structs.length && struct.id.clock < endDeleteItemClock;
struct = structs[++si]
) {
const struct = structs[si];
if (deleteItem.clock + deleteItem.len <= struct.id.clock) {
break
}
if (struct instanceof Item && struct.deleted && !struct.keep && gcFilter(struct)) {
struct.gc(store, false);
}
}
}
}
};
/**
* @param {DeleteSet} ds
* @param {StructStore} store
*/
const tryMergeDeleteSet = (ds, store) => {
// try to merge deleted / gc'd items
// merge from right to left for better efficiency and so we don't miss any merge targets
ds.clients.forEach((deleteItems, client) => {
const structs = /** @type {Array<GC|Item>} */ (store.clients.get(client));
for (let di = deleteItems.length - 1; di >= 0; di--) {
const deleteItem = deleteItems[di];
// start with merging the item next to the last deleted item
const mostRightIndexToCheck = math.min(structs.length - 1, 1 + findIndexSS(structs, deleteItem.clock + deleteItem.len - 1));
for (
let si = mostRightIndexToCheck, struct = structs[si];
si > 0 && struct.id.clock >= deleteItem.clock;
struct = structs[si]
) {
si -= 1 + tryToMergeWithLefts(structs, si);
}
}
});
};
/**
* @param {DeleteSet} ds
* @param {StructStore} store
* @param {function(Item):boolean} gcFilter
*/
const tryGc = (ds, store, gcFilter) => {
tryGcDeleteSet(ds, store, gcFilter);
tryMergeDeleteSet(ds, store);
};
/**
* @param {Array<Transaction>} transactionCleanups
* @param {number} i
*/
const cleanupTransactions = (transactionCleanups, i) => {
if (i < transactionCleanups.length) {
const transaction = transactionCleanups[i];
const doc = transaction.doc;
const store = doc.store;
const ds = transaction.deleteSet;
const mergeStructs = transaction._mergeStructs;
try {
sortAndMergeDeleteSet(ds);
transaction.afterState = getStateVector(transaction.doc.store);
doc.emit('beforeObserverCalls', [transaction, doc]);
/**
* An array of event callbacks.
*
* Each callback is called even if the other ones throw errors.
*
* @type {Array<function():void>}
*/
const fs = [];
// observe events on changed types
transaction.changed.forEach((subs, itemtype) =>
fs.push(() => {
if (itemtype._item === null || !itemtype._item.deleted) {
itemtype._callObserver(transaction, subs);
}
})
);
fs.push(() => {
// deep observe events
transaction.changedParentTypes.forEach((events, type) => {
// We need to think about the possibility that the user transforms the
// Y.Doc in the event.
if (type._dEH.l.length > 0 && (type._item === null || !type._item.deleted)) {
events = events
.filter(event =>
event.target._item === null || !event.target._item.deleted
);
events
.forEach(event => {
event.currentTarget = type;
// path is relative to the current target
event._path = null;
});
// sort events by path length so that top-level events are fired first.
events
.sort((event1, event2) => event1.path.length - event2.path.length);
// We don't need to check for events.length
// because we know it has at least one element
callEventHandlerListeners(type._dEH, events, transaction);
}
});
});
fs.push(() => doc.emit('afterTransaction', [transaction, doc]));
callAll(fs, []);
if (transaction._needFormattingCleanup) {
cleanupYTextAfterTransaction(transaction);
}
} finally {
// Replace deleted items with ItemDeleted / GC.
// This is where content is actually remove from the Yjs Doc.
if (doc.gc) {
tryGcDeleteSet(ds, store, doc.gcFilter);
}
tryMergeDeleteSet(ds, store);
// on all affected store.clients props, try to merge
transaction.afterState.forEach((clock, client) => {
const beforeClock = transaction.beforeState.get(client) || 0;
if (beforeClock !== clock) {
const structs = /** @type {Array<GC|Item>} */ (store.clients.get(client));
// we iterate from right to left so we can safely remove entries
const firstChangePos = math.max(findIndexSS(structs, beforeClock), 1);
for (let i = structs.length - 1; i >= firstChangePos;) {
i -= 1 + tryToMergeWithLefts(structs, i);
}
}
});
// try to merge mergeStructs
// @todo: it makes more sense to transform mergeStructs to a DS, sort it, and merge from right to left
// but at the moment DS does not handle duplicates
for (let i = mergeStructs.length - 1; i >= 0; i--) {
const { client, clock } = mergeStructs[i].id;
const structs = /** @type {Array<GC|Item>} */ (store.clients.get(client));
const replacedStructPos = findIndexSS(structs, clock);
if (replacedStructPos + 1 < structs.length) {
if (tryToMergeWithLefts(structs, replacedStructPos + 1) > 1) {
continue // no need to perform next check, both are already merged
}
}
if (replacedStructPos > 0) {
tryToMergeWithLefts(structs, replacedStructPos);
}
}
if (!transaction.local && transaction.afterState.get(doc.clientID) !== transaction.beforeState.get(doc.clientID)) {
logging.print(logging.ORANGE, logging.BOLD, '[yjs] ', logging.UNBOLD, logging.RED, 'Changed the client-id because another client seems to be using it.');
doc.clientID = generateNewClientId();
}
// @todo Merge all the transactions into one and provide send the data as a single update message
doc.emit('afterTransactionCleanup', [transaction, doc]);
if (doc._observers.has('update')) {
const encoder = new UpdateEncoderV1();
const hasContent = writeUpdateMessageFromTransaction(encoder, transaction);
if (hasContent) {
doc.emit('update', [encoder.toUint8Array(), transaction.origin, doc, transaction]);
}
}
if (doc._observers.has('updateV2')) {
const encoder = new UpdateEncoderV2();
const hasContent = writeUpdateMessageFromTransaction(encoder, transaction);
if (hasContent) {
doc.emit('updateV2', [encoder.toUint8Array(), transaction.origin, doc, transaction]);
}
}
const { subdocsAdded, subdocsLoaded, subdocsRemoved } = transaction;
if (subdocsAdded.size > 0 || subdocsRemoved.size > 0 || subdocsLoaded.size > 0) {
subdocsAdded.forEach(subdoc => {
subdoc.clientID = doc.clientID;
if (subdoc.collectionid == null) {
subdoc.collectionid = doc.collectionid;
}
doc.subdocs.add(subdoc);
});
subdocsRemoved.forEach(subdoc => doc.subdocs.delete(subdoc));
doc.emit('subdocs', [{ loaded: subdocsLoaded, added: subdocsAdded, removed: subdocsRemoved }, doc, transaction]);
subdocsRemoved.forEach(subdoc => subdoc.destroy());
}
if (transactionCleanups.length <= i + 1) {
doc._transactionCleanups = [];
doc.emit('afterAllTransactions', [doc, transactionCleanups]);
} else {
cleanupTransactions(transactionCleanups, i + 1);
}
}
}
};
/**
* Implements the functionality of `y.transact(()=>{..})`
*
* @template T
* @param {Doc} doc
* @param {function(Transaction):T} f
* @param {any} [origin=true]
* @return {T}
*
* @function
*/
const transact = (doc, f, origin = null, local = true) => {
const transactionCleanups = doc._transactionCleanups;
let initialCall = false;
/**
* @type {any}
*/
let result = null;
if (doc._transaction === null) {
initialCall = true;
doc._transaction = new Transaction(doc, origin, local);
transactionCleanups.push(doc._transaction);
if (transactionCleanups.length === 1) {
doc.emit('beforeAllTransactions', [doc]);
}
doc.emit('beforeTransaction', [doc._transaction, doc]);
}
try {
result = f(doc._transaction);
} finally {
if (initialCall) {
const finishCleanup = doc._transaction === transactionCleanups[0];
doc._transaction = null;
if (finishCleanup) {
// The first transaction ended, now process observer calls.
// Observer call may create new transactions for which we need to call the observers and do cleanup.
// We don't want to nest these calls, so we execute these calls one after
// another.
// Also we need to ensure that all cleanups are called, even if the
// observes throw errors.
// This file is full of hacky try {} finally {} blocks to ensure that an
// event can throw errors and also that the cleanup is called.
cleanupTransactions(transactionCleanups, 0);
}
}
}
return result
};
class StackItem {
/**
* @param {DeleteSet} deletions
* @param {DeleteSet} insertions
*/
constructor (deletions, insertions) {
this.insertions = insertions;
this.deletions = deletions;
/**
* Use this to save and restore metadata like selection range
*/
this.meta = new Map();
}
}
/**
* @param {Transaction} tr
* @param {UndoManager} um
* @param {StackItem} stackItem
*/
const clearUndoManagerStackItem = (tr, um, stackItem) => {
iterateDeletedStructs(tr, stackItem.deletions, item => {
if (item instanceof Item && um.scope.some(type => isParentOf(type, item))) {
keepItem(item, false);
}
});
};
/**
* @param {UndoManager} undoManager
* @param {Array<StackItem>} stack
* @param {'undo'|'redo'} eventType
* @return {StackItem?}
*/
const popStackItem = (undoManager, stack, eventType) => {
/**
* Keep a reference to the transaction so we can fire the event with the changedParentTypes
* @type {any}
*/
let _tr = null;
const doc = undoManager.doc;
const scope = undoManager.scope;
transact(doc, transaction => {
while (stack.length > 0 && undoManager.currStackItem === null) {
const store = doc.store;
const stackItem = /** @type {StackItem} */ (stack.pop());
/**
* @type {Set<Item>}
*/
const itemsToRedo = new Set();
/**
* @type {Array<Item>}
*/
const itemsToDelete = [];
let performedChange = false;
iterateDeletedStructs(transaction, stackItem.insertions, struct => {
if (struct instanceof Item) {
if (struct.redone !== null) {
let { item, diff } = followRedone(store, struct.id);
if (diff > 0) {
item = getItemCleanStart(transaction, createID(item.id.client, item.id.clock + diff));
}
struct = item;
}
if (!struct.deleted && scope.some(type => isParentOf(type, /** @type {Item} */ (struct)))) {
itemsToDelete.push(struct);
}
}
});
iterateDeletedStructs(transaction, stackItem.deletions, struct => {
if (
struct instanceof Item &&
scope.some(type => isParentOf(type, struct)) &&
// Never redo structs in stackItem.insertions because they were created and deleted in the same capture interval.
!isDeleted(stackItem.insertions, struct.id)
) {
itemsToRedo.add(struct);
}
});
itemsToRedo.forEach(struct => {
performedChange = redoItem(transaction, struct, itemsToRedo, stackItem.insertions, undoManager.ignoreRemoteMapChanges, undoManager) !== null || performedChange;
});
// We want to delete in reverse order so that children are deleted before
// parents, so we have more information available when items are filtered.
for (let i = itemsToDelete.length - 1; i >= 0; i--) {
const item = itemsToDelete[i];
if (undoManager.deleteFilter(item)) {
item.delete(transaction);
performedChange = true;
}
}
undoManager.currStackItem = performedChange ? stackItem : null;
}
transaction.changed.forEach((subProps, type) => {
// destroy search marker if necessary
if (subProps.has(null) && type._searchMarker) {
type._searchMarker.length = 0;
}
});
_tr = transaction;
}, undoManager);
const res = undoManager.currStackItem;
if (res != null) {
const changedParentTypes = _tr.changedParentTypes;
undoManager.emit('stack-item-popped', [{ stackItem: res, type: eventType, changedParentTypes, origin: undoManager }, undoManager]);
undoManager.currStackItem = null;
}
return res
};
/**
* @typedef {Object} UndoManagerOptions
* @property {number} [UndoManagerOptions.captureTimeout=500]
* @property {function(Transaction):boolean} [UndoManagerOptions.captureTransaction] Do not capture changes of a Transaction if result false.
* @property {function(Item):boolean} [UndoManagerOptions.deleteFilter=()=>true] Sometimes
* it is necessary to filter what an Undo/Redo operation can delete. If this
* filter returns false, the type/item won't be deleted even it is in the
* undo/redo scope.
* @property {Set<any>} [UndoManagerOptions.trackedOrigins=new Set([null])]
* @property {boolean} [ignoreRemoteMapChanges] Experimental. By default, the UndoManager will never overwrite remote changes. Enable this property to enable overwriting remote changes on key-value changes (Y.Map, properties on Y.Xml, etc..).
* @property {Doc} [doc] The document that this UndoManager operates on. Only needed if typeScope is empty.
*/
/**
* @typedef {Object} StackItemEvent
* @property {StackItem} StackItemEvent.stackItem
* @property {any} StackItemEvent.origin
* @property {'undo'|'redo'} StackItemEvent.type
* @property {Map<AbstractType<YEvent<any>>,Array<YEvent<any>>>} StackItemEvent.changedParentTypes
*/
/**
* Fires 'stack-item-added' event when a stack item was added to either the undo- or
* the redo-stack. You may store additional stack information via the
* metadata property on `event.stackItem.meta` (it is a `Map` of metadata properties).
* Fires 'stack-item-popped' event when a stack item was popped from either the
* undo- or the redo-stack. You may restore the saved stack information from `event.stackItem.meta`.
*
* @extends {ObservableV2<{'stack-item-added':function(StackItemEvent, UndoManager):void, 'stack-item-popped': function(StackItemEvent, UndoManager):void, 'stack-cleared': function({ undoStackCleared: boolean, redoStackCleared: boolean }):void, 'stack-item-updated': function(StackItemEvent, UndoManager):void }>}
*/
class UndoManager extends ObservableV2 {
/**
* @param {AbstractType<any>|Array<AbstractType<any>>} typeScope Accepts either a single type, or an array of types
* @param {UndoManagerOptions} options
*/
constructor (typeScope, {
captureTimeout = 500,
captureTransaction = _tr => true,
deleteFilter = () => true,
trackedOrigins = new Set([null]),
ignoreRemoteMapChanges = false,
doc = /** @type {Doc} */ (array.isArray(typeScope) ? typeScope[0].doc : typeScope.doc)
} = {}) {
super();
/**
* @type {Array<AbstractType<any>>}
*/
this.scope = [];
this.doc = doc;
this.addToScope(typeScope);
this.deleteFilter = deleteFilter;
trackedOrigins.add(this);
this.trackedOrigins = trackedOrigins;
this.captureTransaction = captureTransaction;
/**
* @type {Array<StackItem>}
*/
this.undoStack = [];
/**
* @type {Array<StackItem>}
*/
this.redoStack = [];
/**
* Whether the client is currently undoing (calling UndoManager.undo)
*
* @type {boolean}
*/
this.undoing = false;
this.redoing = false;
/**
* The currently popped stack item if UndoManager.undoing or UndoManager.redoing
*
* @type {StackItem|null}
*/
this.currStackItem = null;
this.lastChange = 0;
this.ignoreRemoteMapChanges = ignoreRemoteMapChanges;
this.captureTimeout = captureTimeout;
/**
* @param {Transaction} transaction
*/
this.afterTransactionHandler = transaction => {
// Only track certain transactions
if (
!this.captureTransaction(transaction) ||
!this.scope.some(type => transaction.changedParentTypes.has(type)) ||
(!this.trackedOrigins.has(transaction.origin) && (!transaction.origin || !this.trackedOrigins.has(transaction.origin.constructor)))
) {
return
}
const undoing = this.undoing;
const redoing = this.redoing;
const stack = undoing ? this.redoStack : this.undoStack;
if (undoing) {
this.stopCapturing(); // next undo should not be appended to last stack item
} else if (!redoing) {
// neither undoing nor redoing: delete redoStack
this.clear(false, true);
}
const insertions = new DeleteSet();
transaction.afterState.forEach((endClock, client) => {
const startClock = transaction.beforeState.get(client) || 0;
const len = endClock - startClock;
if (len > 0) {
addToDeleteSet(insertions, client, startClock, len);
}
});
const now = time.getUnixTime();
let didAdd = false;
if (this.lastChange > 0 && now - this.lastChange < this.captureTimeout && stack.length > 0 && !undoing && !redoing) {
// append change to last stack op
const lastOp = stack[stack.length - 1];
lastOp.deletions = mergeDeleteSets([lastOp.deletions, transaction.deleteSet]);
lastOp.insertions = mergeDeleteSets([lastOp.insertions, insertions]);
} else {
// create a new stack op
stack.push(new StackItem(transaction.deleteSet, insertions));
didAdd = true;
}
if (!undoing && !redoing) {
this.lastChange = now;
}
// make sure that deleted structs are not gc'd
iterateDeletedStructs(transaction, transaction.deleteSet, /** @param {Item|GC} item */ item => {
if (item instanceof Item && this.scope.some(type => isParentOf(type, item))) {
keepItem(item, true);
}
});
/**
* @type {[StackItemEvent, UndoManager]}
*/
const changeEvent = [{ stackItem: stack[stack.length - 1], origin: transaction.origin, type: undoing ? 'redo' : 'undo', changedParentTypes: transaction.changedParentTypes }, this];
if (didAdd) {
this.emit('stack-item-added', changeEvent);
} else {
this.emit('stack-item-updated', changeEvent);
}
};
this.doc.on('afterTransaction', this.afterTransactionHandler);
this.doc.on('destroy', () => {
this.destroy();
});
}
/**
* @param {Array<AbstractType<any>> | AbstractType<any>} ytypes
*/
addToScope (ytypes) {
ytypes = array.isArray(ytypes) ? ytypes : [ytypes];
ytypes.forEach(ytype => {
if (this.scope.every(yt => yt !== ytype)) {
if (ytype.doc !== this.doc) logging.warn('[yjs#509] Not same Y.Doc'); // use MultiDocUndoManager instead. also see https://github.com/yjs/yjs/issues/509
this.scope.push(ytype);
}
});
}
/**
* @param {any} origin
*/
addTrackedOrigin (origin) {
this.trackedOrigins.add(origin);
}
/**
* @param {any} origin
*/
removeTrackedOrigin (origin) {
this.trackedOrigins.delete(origin);
}
clear (clearUndoStack = true, clearRedoStack = true) {
if ((clearUndoStack && this.canUndo()) || (clearRedoStack && this.canRedo())) {
this.doc.transact(tr => {
if (clearUndoStack) {
this.undoStack.forEach(item => clearUndoManagerStackItem(tr, this, item));
this.undoStack = [];
}
if (clearRedoStack) {
this.redoStack.forEach(item => clearUndoManagerStackItem(tr, this, item));
this.redoStack = [];
}
this.emit('stack-cleared', [{ undoStackCleared: clearUndoStack, redoStackCleared: clearRedoStack }]);
});
}
}
/**
* UndoManager merges Undo-StackItem if they are created within time-gap
* smaller than `options.captureTimeout`. Call `um.stopCapturing()` so that the next
* StackItem won't be merged.
*
*
* @example
* // without stopCapturing
* ytext.insert(0, 'a')
* ytext.insert(1, 'b')
* um.undo()
* ytext.toString() // => '' (note that 'ab' was removed)
* // with stopCapturing
* ytext.insert(0, 'a')
* um.stopCapturing()
* ytext.insert(0, 'b')
* um.undo()
* ytext.toString() // => 'a' (note that only 'b' was removed)
*
*/
stopCapturing () {
this.lastChange = 0;
}
/**
* Undo last changes on type.
*
* @return {StackItem?} Returns StackItem if a change was applied
*/
undo () {
this.undoing = true;
let res;
try {
res = popStackItem(this, this.undoStack, 'undo');
} finally {
this.undoing = false;
}
return res
}
/**
* Redo last undo operation.
*
* @return {StackItem?} Returns StackItem if a change was applied
*/
redo () {
this.redoing = true;
let res;
try {
res = popStackItem(this, this.redoStack, 'redo');
} finally {
this.redoing = false;
}
return res
}
/**
* Are undo steps available?
*
* @return {boolean} `true` if undo is possible
*/
canUndo () {
return this.undoStack.length > 0
}
/**
* Are redo steps available?
*
* @return {boolean} `true` if redo is possible
*/
canRedo () {
return this.redoStack.length > 0
}
destroy () {
this.trackedOrigins.delete(this);
this.doc.off('afterTransaction', this.afterTransactionHandler);
super.destroy();
}
}
/**
* @param {UpdateDecoderV1 | UpdateDecoderV2} decoder
*/
function * lazyStructReaderGenerator (decoder) {
const numOfStateUpdates = decoding.readVarUint(decoder.restDecoder);
for (let i = 0; i < numOfStateUpdates; i++) {
const numberOfStructs = decoding.readVarUint(decoder.restDecoder);
const client = decoder.readClient();
let clock = decoding.readVarUint(decoder.restDecoder);
for (let i = 0; i < numberOfStructs; i++) {
const info = decoder.readInfo();
// @todo use switch instead of ifs
if (info === 10) {
const len = decoding.readVarUint(decoder.restDecoder);
yield new Skip(createID(client, clock), len);
clock += len;
} else if ((binary.BITS5 & info) !== 0) {
const cantCopyParentInfo = (info & (binary.BIT7 | binary.BIT8)) === 0;
// If parent = null and neither left nor right are defined, then we know that `parent` is child of `y`
// and we read the next string as parentYKey.
// It indicates how we store/retrieve parent from `y.share`
// @type {string|null}
const struct = new Item(
createID(client, clock),
null, // left
(info & binary.BIT8) === binary.BIT8 ? decoder.readLeftID() : null, // origin
null, // right
(info & binary.BIT7) === binary.BIT7 ? decoder.readRightID() : null, // right origin
// @ts-ignore Force writing a string here.
cantCopyParentInfo ? (decoder.readParentInfo() ? decoder.readString() : decoder.readLeftID()) : null, // parent
cantCopyParentInfo && (info & binary.BIT6) === binary.BIT6 ? decoder.readString() : null, // parentSub
readItemContent(decoder, info) // item content
);
yield struct;
clock += struct.length;
} else {
const len = decoder.readLen();
yield new GC(createID(client, clock), len);
clock += len;
}
}
}
}
class LazyStructReader {
/**
* @param {UpdateDecoderV1 | UpdateDecoderV2} decoder
* @param {boolean} filterSkips
*/
constructor (decoder, filterSkips) {
this.gen = lazyStructReaderGenerator(decoder);
/**
* @type {null | Item | Skip | GC}
*/
this.curr = null;
this.done = false;
this.filterSkips = filterSkips;
this.next();
}
/**
* @return {Item | GC | Skip |null}
*/
next () {
// ignore "Skip" structs
do {
this.curr = this.gen.next().value || null;
} while (this.filterSkips && this.curr !== null && this.curr.constructor === Skip)
return this.curr
}
}
/**
* @param {Uint8Array} update
*
*/
const logUpdate = update => logUpdateV2(update, UpdateDecoderV1);
/**
* @param {Uint8Array} update
* @param {typeof UpdateDecoderV2 | typeof UpdateDecoderV1} [YDecoder]
*
*/
const logUpdateV2 = (update, YDecoder = UpdateDecoderV2) => {
const structs = [];
const updateDecoder = new YDecoder(decoding.createDecoder(update));
const lazyDecoder = new LazyStructReader(updateDecoder, false);
for (let curr = lazyDecoder.curr; curr !== null; curr = lazyDecoder.next()) {
structs.push(curr);
}
logging.print('Structs: ', structs);
const ds = readDeleteSet(updateDecoder);
logging.print('DeleteSet: ', ds);
};
/**
* @param {Uint8Array} update
*
*/
const decodeUpdate = (update) => decodeUpdateV2(update, UpdateDecoderV1);
/**
* @param {Uint8Array} update
* @param {typeof UpdateDecoderV2 | typeof UpdateDecoderV1} [YDecoder]
*
*/
const decodeUpdateV2 = (update, YDecoder = UpdateDecoderV2) => {
const structs = [];
const updateDecoder = new YDecoder(decoding.createDecoder(update));
const lazyDecoder = new LazyStructReader(updateDecoder, false);
for (let curr = lazyDecoder.curr; curr !== null; curr = lazyDecoder.next()) {
structs.push(curr);
}
return {
structs,
ds: readDeleteSet(updateDecoder)
}
};
class LazyStructWriter {
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
*/
constructor (encoder) {
this.currClient = 0;
this.startClock = 0;
this.written = 0;
this.encoder = encoder;
/**
* We want to write operations lazily, but also we need to know beforehand how many operations we want to write for each client.
*
* This kind of meta-information (#clients, #structs-per-client-written) is written to the restEncoder.
*
* We fragment the restEncoder and store a slice of it per-client until we know how many clients there are.
* When we flush (toUint8Array) we write the restEncoder using the fragments and the meta-information.
*
* @type {Array<{ written: number, restEncoder: Uint8Array }>}
*/
this.clientStructs = [];
}
}
/**
* @param {Array<Uint8Array>} updates
* @return {Uint8Array}
*/
const mergeUpdates = updates => mergeUpdatesV2(updates, UpdateDecoderV1, UpdateEncoderV1);
/**
* @param {Uint8Array} update
* @param {typeof DSEncoderV1 | typeof DSEncoderV2} YEncoder
* @param {typeof UpdateDecoderV1 | typeof UpdateDecoderV2} YDecoder
* @return {Uint8Array}
*/
const encodeStateVectorFromUpdateV2 = (update, YEncoder = DSEncoderV2, YDecoder = UpdateDecoderV2) => {
const encoder = new YEncoder();
const updateDecoder = new LazyStructReader(new YDecoder(decoding.createDecoder(update)), false);
let curr = updateDecoder.curr;
if (curr !== null) {
let size = 0;
let currClient = curr.id.client;
let stopCounting = curr.id.clock !== 0; // must start at 0
let currClock = stopCounting ? 0 : curr.id.clock + curr.length;
for (; curr !== null; curr = updateDecoder.next()) {
if (currClient !== curr.id.client) {
if (currClock !== 0) {
size++;
// We found a new client
// write what we have to the encoder
encoding.writeVarUint(encoder.restEncoder, currClient);
encoding.writeVarUint(encoder.restEncoder, currClock);
}
currClient = curr.id.client;
currClock = 0;
stopCounting = curr.id.clock !== 0;
}
// we ignore skips
if (curr.constructor === Skip) {
stopCounting = true;
}
if (!stopCounting) {
currClock = curr.id.clock + curr.length;
}
}
// write what we have
if (currClock !== 0) {
size++;
encoding.writeVarUint(encoder.restEncoder, currClient);
encoding.writeVarUint(encoder.restEncoder, currClock);
}
// prepend the size of the state vector
const enc = encoding.createEncoder();
encoding.writeVarUint(enc, size);
encoding.writeBinaryEncoder(enc, encoder.restEncoder);
encoder.restEncoder = enc;
return encoder.toUint8Array()
} else {
encoding.writeVarUint(encoder.restEncoder, 0);
return encoder.toUint8Array()
}
};
/**
* @param {Uint8Array} update
* @return {Uint8Array}
*/
const encodeStateVectorFromUpdate = update => encodeStateVectorFromUpdateV2(update, DSEncoderV1, UpdateDecoderV1);
/**
* @param {Uint8Array} update
* @param {typeof UpdateDecoderV1 | typeof UpdateDecoderV2} YDecoder
* @return {{ from: Map<number,number>, to: Map<number,number> }}
*/
const parseUpdateMetaV2 = (update, YDecoder = UpdateDecoderV2) => {
/**
* @type {Map<number, number>}
*/
const from = new Map();
/**
* @type {Map<number, number>}
*/
const to = new Map();
const updateDecoder = new LazyStructReader(new YDecoder(decoding.createDecoder(update)), false);
let curr = updateDecoder.curr;
if (curr !== null) {
let currClient = curr.id.client;
let currClock = curr.id.clock;
// write the beginning to `from`
from.set(currClient, currClock);
for (; curr !== null; curr = updateDecoder.next()) {
if (currClient !== curr.id.client) {
// We found a new client
// write the end to `to`
to.set(currClient, currClock);
// write the beginning to `from`
from.set(curr.id.client, curr.id.clock);
// update currClient
currClient = curr.id.client;
}
currClock = curr.id.clock + curr.length;
}
// write the end to `to`
to.set(currClient, currClock);
}
return { from, to }
};
/**
* @param {Uint8Array} update
* @return {{ from: Map<number,number>, to: Map<number,number> }}
*/
const parseUpdateMeta = update => parseUpdateMetaV2(update, UpdateDecoderV1);
/**
* This method is intended to slice any kind of struct and retrieve the right part.
* It does not handle side-effects, so it should only be used by the lazy-encoder.
*
* @param {Item | GC | Skip} left
* @param {number} diff
* @return {Item | GC}
*/
const sliceStruct = (left, diff) => {
if (left.constructor === GC) {
const { client, clock } = left.id;
return new GC(createID(client, clock + diff), left.length - diff)
} else if (left.constructor === Skip) {
const { client, clock } = left.id;
return new Skip(createID(client, clock + diff), left.length - diff)
} else {
const leftItem = /** @type {Item} */ (left);
const { client, clock } = leftItem.id;
return new Item(
createID(client, clock + diff),
null,
createID(client, clock + diff - 1),
null,
leftItem.rightOrigin,
leftItem.parent,
leftItem.parentSub,
leftItem.content.splice(diff)
)
}
};
/**
*
* This function works similarly to `readUpdateV2`.
*
* @param {Array<Uint8Array>} updates
* @param {typeof UpdateDecoderV1 | typeof UpdateDecoderV2} [YDecoder]
* @param {typeof UpdateEncoderV1 | typeof UpdateEncoderV2} [YEncoder]
* @return {Uint8Array}
*/
const mergeUpdatesV2 = (updates, YDecoder = UpdateDecoderV2, YEncoder = UpdateEncoderV2) => {
if (updates.length === 1) {
return updates[0]
}
const updateDecoders = updates.map(update => new YDecoder(decoding.createDecoder(update)));
let lazyStructDecoders = updateDecoders.map(decoder => new LazyStructReader(decoder, true));
/**
* @todo we don't need offset because we always slice before
* @type {null | { struct: Item | GC | Skip, offset: number }}
*/
let currWrite = null;
const updateEncoder = new YEncoder();
// write structs lazily
const lazyStructEncoder = new LazyStructWriter(updateEncoder);
// Note: We need to ensure that all lazyStructDecoders are fully consumed
// Note: Should merge document updates whenever possible - even from different updates
// Note: Should handle that some operations cannot be applied yet ()
while (true) {
// Write higher clients first ⇒ sort by clientID & clock and remove decoders without content
lazyStructDecoders = lazyStructDecoders.filter(dec => dec.curr !== null);
lazyStructDecoders.sort(
/** @type {function(any,any):number} */ (dec1, dec2) => {
if (dec1.curr.id.client === dec2.curr.id.client) {
const clockDiff = dec1.curr.id.clock - dec2.curr.id.clock;
if (clockDiff === 0) {
// @todo remove references to skip since the structDecoders must filter Skips.
return dec1.curr.constructor === dec2.curr.constructor
? 0
: dec1.curr.constructor === Skip ? 1 : -1 // we are filtering skips anyway.
} else {
return clockDiff
}
} else {
return dec2.curr.id.client - dec1.curr.id.client
}
}
);
if (lazyStructDecoders.length === 0) {
break
}
const currDecoder = lazyStructDecoders[0];
// write from currDecoder until the next operation is from another client or if filler-struct
// then we need to reorder the decoders and find the next operation to write
const firstClient = /** @type {Item | GC} */ (currDecoder.curr).id.client;
if (currWrite !== null) {
let curr = /** @type {Item | GC | null} */ (currDecoder.curr);
let iterated = false;
// iterate until we find something that we haven't written already
// remember: first the high client-ids are written
while (curr !== null && curr.id.clock + curr.length <= currWrite.struct.id.clock + currWrite.struct.length && curr.id.client >= currWrite.struct.id.client) {
curr = currDecoder.next();
iterated = true;
}
if (
curr === null || // current decoder is empty
curr.id.client !== firstClient || // check whether there is another decoder that has has updates from `firstClient`
(iterated && curr.id.clock > currWrite.struct.id.clock + currWrite.struct.length) // the above while loop was used and we are potentially missing updates
) {
continue
}
if (firstClient !== currWrite.struct.id.client) {
writeStructToLazyStructWriter(lazyStructEncoder, currWrite.struct, currWrite.offset);
currWrite = { struct: curr, offset: 0 };
currDecoder.next();
} else {
if (currWrite.struct.id.clock + currWrite.struct.length < curr.id.clock) {
// @todo write currStruct & set currStruct = Skip(clock = currStruct.id.clock + currStruct.length, length = curr.id.clock - self.clock)
if (currWrite.struct.constructor === Skip) {
// extend existing skip
currWrite.struct.length = curr.id.clock + curr.length - currWrite.struct.id.clock;
} else {
writeStructToLazyStructWriter(lazyStructEncoder, currWrite.struct, currWrite.offset);
const diff = curr.id.clock - currWrite.struct.id.clock - currWrite.struct.length;
/**
* @type {Skip}
*/
const struct = new Skip(createID(firstClient, currWrite.struct.id.clock + currWrite.struct.length), diff);
currWrite = { struct, offset: 0 };
}
} else { // if (currWrite.struct.id.clock + currWrite.struct.length >= curr.id.clock) {
const diff = currWrite.struct.id.clock + currWrite.struct.length - curr.id.clock;
if (diff > 0) {
if (currWrite.struct.constructor === Skip) {
// prefer to slice Skip because the other struct might contain more information
currWrite.struct.length -= diff;
} else {
curr = sliceStruct(curr, diff);
}
}
if (!currWrite.struct.mergeWith(/** @type {any} */ (curr))) {
writeStructToLazyStructWriter(lazyStructEncoder, currWrite.struct, currWrite.offset);
currWrite = { struct: curr, offset: 0 };
currDecoder.next();
}
}
}
} else {
currWrite = { struct: /** @type {Item | GC} */ (currDecoder.curr), offset: 0 };
currDecoder.next();
}
for (
let next = currDecoder.curr;
next !== null && next.id.client === firstClient && next.id.clock === currWrite.struct.id.clock + currWrite.struct.length && next.constructor !== Skip;
next = currDecoder.next()
) {
writeStructToLazyStructWriter(lazyStructEncoder, currWrite.struct, currWrite.offset);
currWrite = { struct: next, offset: 0 };
}
}
if (currWrite !== null) {
writeStructToLazyStructWriter(lazyStructEncoder, currWrite.struct, currWrite.offset);
currWrite = null;
}
finishLazyStructWriting(lazyStructEncoder);
const dss = updateDecoders.map(decoder => readDeleteSet(decoder));
const ds = mergeDeleteSets(dss);
writeDeleteSet(updateEncoder, ds);
return updateEncoder.toUint8Array()
};
/**
* @param {Uint8Array} update
* @param {Uint8Array} sv
* @param {typeof UpdateDecoderV1 | typeof UpdateDecoderV2} [YDecoder]
* @param {typeof UpdateEncoderV1 | typeof UpdateEncoderV2} [YEncoder]
*/
const diffUpdateV2 = (update, sv, YDecoder = UpdateDecoderV2, YEncoder = UpdateEncoderV2) => {
const state = decodeStateVector(sv);
const encoder = new YEncoder();
const lazyStructWriter = new LazyStructWriter(encoder);
const decoder = new YDecoder(decoding.createDecoder(update));
const reader = new LazyStructReader(decoder, false);
while (reader.curr) {
const curr = reader.curr;
const currClient = curr.id.client;
const svClock = state.get(currClient) || 0;
if (reader.curr.constructor === Skip) {
// the first written struct shouldn't be a skip
reader.next();
continue
}
if (curr.id.clock + curr.length > svClock) {
writeStructToLazyStructWriter(lazyStructWriter, curr, math.max(svClock - curr.id.clock, 0));
reader.next();
while (reader.curr && reader.curr.id.client === currClient) {
writeStructToLazyStructWriter(lazyStructWriter, reader.curr, 0);
reader.next();
}
} else {
// read until something new comes up
while (reader.curr && reader.curr.id.client === currClient && reader.curr.id.clock + reader.curr.length <= svClock) {
reader.next();
}
}
}
finishLazyStructWriting(lazyStructWriter);
// write ds
const ds = readDeleteSet(decoder);
writeDeleteSet(encoder, ds);
return encoder.toUint8Array()
};
/**
* @param {Uint8Array} update
* @param {Uint8Array} sv
*/
const diffUpdate = (update, sv) => diffUpdateV2(update, sv, UpdateDecoderV1, UpdateEncoderV1);
/**
* @param {LazyStructWriter} lazyWriter
*/
const flushLazyStructWriter = lazyWriter => {
if (lazyWriter.written > 0) {
lazyWriter.clientStructs.push({ written: lazyWriter.written, restEncoder: encoding.toUint8Array(lazyWriter.encoder.restEncoder) });
lazyWriter.encoder.restEncoder = encoding.createEncoder();
lazyWriter.written = 0;
}
};
/**
* @param {LazyStructWriter} lazyWriter
* @param {Item | GC} struct
* @param {number} offset
*/
const writeStructToLazyStructWriter = (lazyWriter, struct, offset) => {
// flush curr if we start another client
if (lazyWriter.written > 0 && lazyWriter.currClient !== struct.id.client) {
flushLazyStructWriter(lazyWriter);
}
if (lazyWriter.written === 0) {
lazyWriter.currClient = struct.id.client;
// write next client
lazyWriter.encoder.writeClient(struct.id.client);
// write startClock
encoding.writeVarUint(lazyWriter.encoder.restEncoder, struct.id.clock + offset);
}
struct.write(lazyWriter.encoder, offset);
lazyWriter.written++;
};
/**
* Call this function when we collected all parts and want to
* put all the parts together. After calling this method,
* you can continue using the UpdateEncoder.
*
* @param {LazyStructWriter} lazyWriter
*/
const finishLazyStructWriting = (lazyWriter) => {
flushLazyStructWriter(lazyWriter);
// this is a fresh encoder because we called flushCurr
const restEncoder = lazyWriter.encoder.restEncoder;
/**
* Now we put all the fragments together.
* This works similarly to `writeClientsStructs`
*/
// write # states that were updated - i.e. the clients
encoding.writeVarUint(restEncoder, lazyWriter.clientStructs.length);
for (let i = 0; i < lazyWriter.clientStructs.length; i++) {
const partStructs = lazyWriter.clientStructs[i];
/**
* Works similarly to `writeStructs`
*/
// write # encoded structs
encoding.writeVarUint(restEncoder, partStructs.written);
// write the rest of the fragment
encoding.writeUint8Array(restEncoder, partStructs.restEncoder);
}
};
/**
* @param {Uint8Array} update
* @param {function(Item|GC|Skip):Item|GC|Skip} blockTransformer
* @param {typeof UpdateDecoderV2 | typeof UpdateDecoderV1} YDecoder
* @param {typeof UpdateEncoderV2 | typeof UpdateEncoderV1 } YEncoder
*/
const convertUpdateFormat = (update, blockTransformer, YDecoder, YEncoder) => {
const updateDecoder = new YDecoder(decoding.createDecoder(update));
const lazyDecoder = new LazyStructReader(updateDecoder, false);
const updateEncoder = new YEncoder();
const lazyWriter = new LazyStructWriter(updateEncoder);
for (let curr = lazyDecoder.curr; curr !== null; curr = lazyDecoder.next()) {
writeStructToLazyStructWriter(lazyWriter, blockTransformer(curr), 0);
}
finishLazyStructWriting(lazyWriter);
const ds = readDeleteSet(updateDecoder);
writeDeleteSet(updateEncoder, ds);
return updateEncoder.toUint8Array()
};
/**
* @typedef {Object} ObfuscatorOptions
* @property {boolean} [ObfuscatorOptions.formatting=true]
* @property {boolean} [ObfuscatorOptions.subdocs=true]
* @property {boolean} [ObfuscatorOptions.yxml=true] Whether to obfuscate nodeName / hookName
*/
/**
* @param {ObfuscatorOptions} obfuscator
*/
const createObfuscator = ({ formatting = true, subdocs = true, yxml = true } = {}) => {
let i = 0;
const mapKeyCache = map.create();
const nodeNameCache = map.create();
const formattingKeyCache = map.create();
const formattingValueCache = map.create();
formattingValueCache.set(null, null); // end of a formatting range should always be the end of a formatting range
/**
* @param {Item|GC|Skip} block
* @return {Item|GC|Skip}
*/
return block => {
switch (block.constructor) {
case GC:
case Skip:
return block
case Item: {
const item = /** @type {Item} */ (block);
const content = item.content;
switch (content.constructor) {
case ContentDeleted:
break
case ContentType: {
if (yxml) {
const type = /** @type {ContentType} */ (content).type;
if (type instanceof YXmlElement) {
type.nodeName = map.setIfUndefined(nodeNameCache, type.nodeName, () => 'node-' + i);
}
if (type instanceof YXmlHook) {
type.hookName = map.setIfUndefined(nodeNameCache, type.hookName, () => 'hook-' + i);
}
}
break
}
case ContentAny: {
const c = /** @type {ContentAny} */ (content);
c.arr = c.arr.map(() => i);
break
}
case ContentBinary: {
const c = /** @type {ContentBinary} */ (content);
c.content = new Uint8Array([i]);
break
}
case ContentDoc: {
const c = /** @type {ContentDoc} */ (content);
if (subdocs) {
c.opts = {};
c.doc.guid = i + '';
}
break
}
case ContentEmbed: {
const c = /** @type {ContentEmbed} */ (content);
c.embed = {};
break
}
case ContentFormat: {
const c = /** @type {ContentFormat} */ (content);
if (formatting) {
c.key = map.setIfUndefined(formattingKeyCache, c.key, () => i + '');
c.value = map.setIfUndefined(formattingValueCache, c.value, () => ({ i }));
}
break
}
case ContentJSON: {
const c = /** @type {ContentJSON} */ (content);
c.arr = c.arr.map(() => i);
break
}
case ContentString: {
const c = /** @type {ContentString} */ (content);
c.str = string.repeat((i % 10) + '', c.str.length);
break
}
default:
// unknown content type
error.unexpectedCase();
}
if (item.parentSub) {
item.parentSub = map.setIfUndefined(mapKeyCache, item.parentSub, () => i + '');
}
i++;
return block
}
default:
// unknown block-type
error.unexpectedCase();
}
}
};
/**
* This function obfuscates the content of a Yjs update. This is useful to share
* buggy Yjs documents while significantly limiting the possibility that a
* developer can on the user. Note that it might still be possible to deduce
* some information by analyzing the "structure" of the document or by analyzing
* the typing behavior using the CRDT-related metadata that is still kept fully
* intact.
*
* @param {Uint8Array} update
* @param {ObfuscatorOptions} [opts]
*/
const obfuscateUpdate = (update, opts) => convertUpdateFormat(update, createObfuscator(opts), UpdateDecoderV1, UpdateEncoderV1);
/**
* @param {Uint8Array} update
* @param {ObfuscatorOptions} [opts]
*/
const obfuscateUpdateV2 = (update, opts) => convertUpdateFormat(update, createObfuscator(opts), UpdateDecoderV2, UpdateEncoderV2);
/**
* @param {Uint8Array} update
*/
const convertUpdateFormatV1ToV2 = update => convertUpdateFormat(update, f.id, UpdateDecoderV1, UpdateEncoderV2);
/**
* @param {Uint8Array} update
*/
const convertUpdateFormatV2ToV1 = update => convertUpdateFormat(update, f.id, UpdateDecoderV2, UpdateEncoderV1);
const errorComputeChanges = 'You must not compute changes after the event-handler fired.';
/**
* @template {AbstractType<any>} T
* YEvent describes the changes on a YType.
*/
class YEvent {
/**
* @param {T} target The changed type.
* @param {Transaction} transaction
*/
constructor (target, transaction) {
/**
* The type on which this event was created on.
* @type {T}
*/
this.target = target;
/**
* The current target on which the observe callback is called.
* @type {AbstractType<any>}
*/
this.currentTarget = target;
/**
* The transaction that triggered this event.
* @type {Transaction}
*/
this.transaction = transaction;
/**
* @type {Object|null}
*/
this._changes = null;
/**
* @type {null | Map<string, { action: 'add' | 'update' | 'delete', oldValue: any, newValue: any }>}
*/
this._keys = null;
/**
* @type {null | Array<{ insert?: string | Array<any> | object | AbstractType<any>, retain?: number, delete?: number, attributes?: Object<string, any> }>}
*/
this._delta = null;
/**
* @type {Array<string|number>|null}
*/
this._path = null;
}
/**
* Computes the path from `y` to the changed type.
*
* @todo v14 should standardize on path: Array<{parent, index}> because that is easier to work with.
*
* The following property holds:
* @example
* let type = y
* event.path.forEach(dir => {
* type = type.get(dir)
* })
* type === event.target // => true
*/
get path () {
return this._path || (this._path = getPathTo(this.currentTarget, this.target))
}
/**
* Check if a struct is deleted by this event.
*
* In contrast to change.deleted, this method also returns true if the struct was added and then deleted.
*
* @param {AbstractStruct} struct
* @return {boolean}
*/
deletes (struct) {
return isDeleted(this.transaction.deleteSet, struct.id)
}
/**
* @type {Map<string, { action: 'add' | 'update' | 'delete', oldValue: any, newValue: any }>}
*/
get keys () {
if (this._keys === null) {
if (this.transaction.doc._transactionCleanups.length === 0) {
throw error.create(errorComputeChanges)
}
const keys = new Map();
const target = this.target;
const changed = /** @type Set<string|null> */ (this.transaction.changed.get(target));
changed.forEach(key => {
if (key !== null) {
const item = /** @type {Item} */ (target._map.get(key));
/**
* @type {'delete' | 'add' | 'update'}
*/
let action;
let oldValue;
if (this.adds(item)) {
let prev = item.left;
while (prev !== null && this.adds(prev)) {
prev = prev.left;
}
if (this.deletes(item)) {
if (prev !== null && this.deletes(prev)) {
action = 'delete';
oldValue = array.last(prev.content.getContent());
} else {
return
}
} else {
if (prev !== null && this.deletes(prev)) {
action = 'update';
oldValue = array.last(prev.content.getContent());
} else {
action = 'add';
oldValue = undefined;
}
}
} else {
if (this.deletes(item)) {
action = 'delete';
oldValue = array.last(/** @type {Item} */ item.content.getContent());
} else {
return // nop
}
}
keys.set(key, { action, oldValue });
}
});
this._keys = keys;
}
return this._keys
}
/**
* This is a computed property. Note that this can only be safely computed during the
* event call. Computing this property after other changes happened might result in
* unexpected behavior (incorrect computation of deltas). A safe way to collect changes
* is to store the `changes` or the `delta` object. Avoid storing the `transaction` object.
*
* @type {Array<{insert?: string | Array<any> | object | AbstractType<any>, retain?: number, delete?: number, attributes?: Object<string, any>}>}
*/
get delta () {
return this.changes.delta
}
/**
* Check if a struct is added by this event.
*
* In contrast to change.deleted, this method also returns true if the struct was added and then deleted.
*
* @param {AbstractStruct} struct
* @return {boolean}
*/
adds (struct) {
return struct.id.clock >= (this.transaction.beforeState.get(struct.id.client) || 0)
}
/**
* This is a computed property. Note that this can only be safely computed during the
* event call. Computing this property after other changes happened might result in
* unexpected behavior (incorrect computation of deltas). A safe way to collect changes
* is to store the `changes` or the `delta` object. Avoid storing the `transaction` object.
*
* @type {{added:Set<Item>,deleted:Set<Item>,keys:Map<string,{action:'add'|'update'|'delete',oldValue:any}>,delta:Array<{insert?:Array<any>|string, delete?:number, retain?:number}>}}
*/
get changes () {
let changes = this._changes;
if (changes === null) {
if (this.transaction.doc._transactionCleanups.length === 0) {
throw error.create(errorComputeChanges)
}
const target = this.target;
const added = set.create();
const deleted = set.create();
/**
* @type {Array<{insert:Array<any>}|{delete:number}|{retain:number}>}
*/
const delta = [];
changes = {
added,
deleted,
delta,
keys: this.keys
};
const changed = /** @type Set<string|null> */ (this.transaction.changed.get(target));
if (changed.has(null)) {
/**
* @type {any}
*/
let lastOp = null;
const packOp = () => {
if (lastOp) {
delta.push(lastOp);
}
};
for (let item = target._start; item !== null; item = item.right) {
if (item.deleted) {
if (this.deletes(item) && !this.adds(item)) {
if (lastOp === null || lastOp.delete === undefined) {
packOp();
lastOp = { delete: 0 };
}
lastOp.delete += item.length;
deleted.add(item);
} // else nop
} else {
if (this.adds(item)) {
if (lastOp === null || lastOp.insert === undefined) {
packOp();
lastOp = { insert: [] };
}
lastOp.insert = lastOp.insert.concat(item.content.getContent());
added.add(item);
} else {
if (lastOp === null || lastOp.retain === undefined) {
packOp();
lastOp = { retain: 0 };
}
lastOp.retain += item.length;
}
}
}
if (lastOp !== null && lastOp.retain === undefined) {
packOp();
}
}
this._changes = changes;
}
return /** @type {any} */ (changes)
}
}
/**
* Compute the path from this type to the specified target.
*
* @example
* // `child` should be accessible via `type.get(path[0]).get(path[1])..`
* const path = type.getPathTo(child)
* // assuming `type instanceof YArray`
* console.log(path) // might look like => [2, 'key1']
* child === type.get(path[0]).get(path[1])
*
* @param {AbstractType<any>} parent
* @param {AbstractType<any>} child target
* @return {Array<string|number>} Path to the target
*
* @private
* @function
*/
const getPathTo = (parent, child) => {
const path = [];
while (child._item !== null && child !== parent) {
if (child._item.parentSub !== null) {
// parent is map-ish
path.unshift(child._item.parentSub);
} else {
// parent is array-ish
let i = 0;
let c = /** @type {AbstractType<any>} */ (child._item.parent)._start;
while (c !== child._item && c !== null) {
if (!c.deleted && c.countable) {
i += c.length;
}
c = c.right;
}
path.unshift(i);
}
child = /** @type {AbstractType<any>} */ (child._item.parent);
}
return path
};
const maxSearchMarker = 80;
/**
* A unique timestamp that identifies each marker.
*
* Time is relative,.. this is more like an ever-increasing clock.
*
* @type {number}
*/
let globalSearchMarkerTimestamp = 0;
class ArraySearchMarker {
/**
* @param {Item} p
* @param {number} index
*/
constructor (p, index) {
p.marker = true;
this.p = p;
this.index = index;
this.timestamp = globalSearchMarkerTimestamp++;
}
}
/**
* @param {ArraySearchMarker} marker
*/
const refreshMarkerTimestamp = marker => { marker.timestamp = globalSearchMarkerTimestamp++; };
/**
* This is rather complex so this function is the only thing that should overwrite a marker
*
* @param {ArraySearchMarker} marker
* @param {Item} p
* @param {number} index
*/
const overwriteMarker = (marker, p, index) => {
marker.p.marker = false;
marker.p = p;
p.marker = true;
marker.index = index;
marker.timestamp = globalSearchMarkerTimestamp++;
};
/**
* @param {Array<ArraySearchMarker>} searchMarker
* @param {Item} p
* @param {number} index
*/
const markPosition = (searchMarker, p, index) => {
if (searchMarker.length >= maxSearchMarker) {
// override oldest marker (we don't want to create more objects)
const marker = searchMarker.reduce((a, b) => a.timestamp < b.timestamp ? a : b);
overwriteMarker(marker, p, index);
return marker
} else {
// create new marker
const pm = new ArraySearchMarker(p, index);
searchMarker.push(pm);
return pm
}
};
/**
* Search marker help us to find positions in the associative array faster.
*
* They speed up the process of finding a position without much bookkeeping.
*
* A maximum of `maxSearchMarker` objects are created.
*
* This function always returns a refreshed marker (updated timestamp)
*
* @param {AbstractType<any>} yarray
* @param {number} index
*/
const findMarker = (yarray, index) => {
if (yarray._start === null || index === 0 || yarray._searchMarker === null) {
return null
}
const marker = yarray._searchMarker.length === 0 ? null : yarray._searchMarker.reduce((a, b) => math.abs(index - a.index) < math.abs(index - b.index) ? a : b);
let p = yarray._start;
let pindex = 0;
if (marker !== null) {
p = marker.p;
pindex = marker.index;
refreshMarkerTimestamp(marker); // we used it, we might need to use it again
}
// iterate to right if possible
while (p.right !== null && pindex < index) {
if (!p.deleted && p.countable) {
if (index < pindex + p.length) {
break
}
pindex += p.length;
}
p = p.right;
}
// iterate to left if necessary (might be that pindex > index)
while (p.left !== null && pindex > index) {
p = p.left;
if (!p.deleted && p.countable) {
pindex -= p.length;
}
}
// we want to make sure that p can't be merged with left, because that would screw up everything
// in that cas just return what we have (it is most likely the best marker anyway)
// iterate to left until p can't be merged with left
while (p.left !== null && p.left.id.client === p.id.client && p.left.id.clock + p.left.length === p.id.clock) {
p = p.left;
if (!p.deleted && p.countable) {
pindex -= p.length;
}
}
// @todo remove!
// assure position
// {
// let start = yarray._start
// let pos = 0
// while (start !== p) {
// if (!start.deleted && start.countable) {
// pos += start.length
// }
// start = /** @type {Item} */ (start.right)
// }
// if (pos !== pindex) {
// debugger
// throw new Error('Gotcha position fail!')
// }
// }
// if (marker) {
// if (window.lengthes == null) {
// window.lengthes = []
// window.getLengthes = () => window.lengthes.sort((a, b) => a - b)
// }
// window.lengthes.push(marker.index - pindex)
// console.log('distance', marker.index - pindex, 'len', p && p.parent.length)
// }
if (marker !== null && math.abs(marker.index - pindex) < /** @type {YText|YArray<any>} */ (p.parent).length / maxSearchMarker) {
// adjust existing marker
overwriteMarker(marker, p, pindex);
return marker
} else {
// create new marker
return markPosition(yarray._searchMarker, p, pindex)
}
};
/**
* Update markers when a change happened.
*
* This should be called before doing a deletion!
*
* @param {Array<ArraySearchMarker>} searchMarker
* @param {number} index
* @param {number} len If insertion, len is positive. If deletion, len is negative.
*/
const updateMarkerChanges = (searchMarker, index, len) => {
for (let i = searchMarker.length - 1; i >= 0; i--) {
const m = searchMarker[i];
if (len > 0) {
/**
* @type {Item|null}
*/
let p = m.p;
p.marker = false;
// Ideally we just want to do a simple position comparison, but this will only work if
// search markers don't point to deleted items for formats.
// Iterate marker to prev undeleted countable position so we know what to do when updating a position
while (p && (p.deleted || !p.countable)) {
p = p.left;
if (p && !p.deleted && p.countable) {
// adjust position. the loop should break now
m.index -= p.length;
}
}
if (p === null || p.marker === true) {
// remove search marker if updated position is null or if position is already marked
searchMarker.splice(i, 1);
continue
}
m.p = p;
p.marker = true;
}
if (index < m.index || (len > 0 && index === m.index)) { // a simple index <= m.index check would actually suffice
m.index = math.max(index, m.index + len);
}
}
};
/**
* Accumulate all (list) children of a type and return them as an Array.
*
* @param {AbstractType<any>} t
* @return {Array<Item>}
*/
const getTypeChildren = t => {
let s = t._start;
const arr = [];
while (s) {
arr.push(s);
s = s.right;
}
return arr
};
/**
* Call event listeners with an event. This will also add an event to all
* parents (for `.observeDeep` handlers).
*
* @template EventType
* @param {AbstractType<EventType>} type
* @param {Transaction} transaction
* @param {EventType} event
*/
const callTypeObservers = (type, transaction, event) => {
const changedType = type;
const changedParentTypes = transaction.changedParentTypes;
while (true) {
// @ts-ignore
map.setIfUndefined(changedParentTypes, type, () => []).push(event);
if (type._item === null) {
break
}
type = /** @type {AbstractType<any>} */ (type._item.parent);
}
callEventHandlerListeners(changedType._eH, event, transaction);
};
/**
* @template EventType
* Abstract Yjs Type class
*/
class AbstractType {
constructor () {
/**
* @type {Item|null}
*/
this._item = null;
/**
* @type {Map<string,Item>}
*/
this._map = new Map();
/**
* @type {Item|null}
*/
this._start = null;
/**
* @type {Doc|null}
*/
this.doc = null;
this._length = 0;
/**
* Event handlers
* @type {EventHandler<EventType,Transaction>}
*/
this._eH = createEventHandler();
/**
* Deep event handlers
* @type {EventHandler<Array<YEvent<any>>,Transaction>}
*/
this._dEH = createEventHandler();
/**
* @type {null | Array<ArraySearchMarker>}
*/
this._searchMarker = null;
}
/**
* @return {AbstractType<any>|null}
*/
get parent () {
return this._item ? /** @type {AbstractType<any>} */ (this._item.parent) : null
}
/**
* Integrate this type into the Yjs instance.
*
* * Save this struct in the os
* * This type is sent to other client
* * Observer functions are fired
*
* @param {Doc} y The Yjs instance
* @param {Item|null} item
*/
_integrate (y, item) {
this.doc = y;
this._item = item;
}
/**
* @return {AbstractType<EventType>}
*/
_copy () {
throw error.methodUnimplemented()
}
/**
* Makes a copy of this data type that can be included somewhere else.
*
* Note that the content is only readable _after_ it has been included somewhere in the Ydoc.
*
* @return {AbstractType<EventType>}
*/
clone () {
throw error.methodUnimplemented()
}
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} _encoder
*/
_write (_encoder) { }
/**
* The first non-deleted item
*/
get _first () {
let n = this._start;
while (n !== null && n.deleted) {
n = n.right;
}
return n
}
/**
* Creates YEvent and calls all type observers.
* Must be implemented by each type.
*
* @param {Transaction} transaction
* @param {Set<null|string>} _parentSubs Keys changed on this type. `null` if list was modified.
*/
_callObserver (transaction, _parentSubs) {
if (!transaction.local && this._searchMarker) {
this._searchMarker.length = 0;
}
}
/**
* Observe all events that are created on this type.
*
* @param {function(EventType, Transaction):void} f Observer function
*/
observe (f) {
addEventHandlerListener(this._eH, f);
}
/**
* Observe all events that are created by this type and its children.
*
* @param {function(Array<YEvent<any>>,Transaction):void} f Observer function
*/
observeDeep (f) {
addEventHandlerListener(this._dEH, f);
}
/**
* Unregister an observer function.
*
* @param {function(EventType,Transaction):void} f Observer function
*/
unobserve (f) {
removeEventHandlerListener(this._eH, f);
}
/**
* Unregister an observer function.
*
* @param {function(Array<YEvent<any>>,Transaction):void} f Observer function
*/
unobserveDeep (f) {
removeEventHandlerListener(this._dEH, f);
}
/**
* @abstract
* @return {any}
*/
toJSON () {}
}
/**
* @param {AbstractType<any>} type
* @param {number} start
* @param {number} end
* @return {Array<any>}
*
* @private
* @function
*/
const typeListSlice = (type, start, end) => {
if (start < 0) {
start = type._length + start;
}
if (end < 0) {
end = type._length + end;
}
let len = end - start;
const cs = [];
let n = type._start;
while (n !== null && len > 0) {
if (n.countable && !n.deleted) {
const c = n.content.getContent();
if (c.length <= start) {
start -= c.length;
} else {
for (let i = start; i < c.length && len > 0; i++) {
cs.push(c[i]);
len--;
}
start = 0;
}
}
n = n.right;
}
return cs
};
/**
* @param {AbstractType<any>} type
* @return {Array<any>}
*
* @private
* @function
*/
const typeListToArray = type => {
const cs = [];
let n = type._start;
while (n !== null) {
if (n.countable && !n.deleted) {
const c = n.content.getContent();
for (let i = 0; i < c.length; i++) {
cs.push(c[i]);
}
}
n = n.right;
}
return cs
};
/**
* @param {AbstractType<any>} type
* @param {Snapshot} snapshot
* @return {Array<any>}
*
* @private
* @function
*/
const typeListToArraySnapshot = (type, snapshot) => {
const cs = [];
let n = type._start;
while (n !== null) {
if (n.countable && isVisible(n, snapshot)) {
const c = n.content.getContent();
for (let i = 0; i < c.length; i++) {
cs.push(c[i]);
}
}
n = n.right;
}
return cs
};
/**
* Executes a provided function on once on every element of this YArray.
*
* @param {AbstractType<any>} type
* @param {function(any,number,any):void} f A function to execute on every element of this YArray.
*
* @private
* @function
*/
const typeListForEach = (type, f) => {
let index = 0;
let n = type._start;
while (n !== null) {
if (n.countable && !n.deleted) {
const c = n.content.getContent();
for (let i = 0; i < c.length; i++) {
f(c[i], index++, type);
}
}
n = n.right;
}
};
/**
* @template C,R
* @param {AbstractType<any>} type
* @param {function(C,number,AbstractType<any>):R} f
* @return {Array<R>}
*
* @private
* @function
*/
const typeListMap = (type, f) => {
/**
* @type {Array<any>}
*/
const result = [];
typeListForEach(type, (c, i) => {
result.push(f(c, i, type));
});
return result
};
/**
* @param {AbstractType<any>} type
* @return {IterableIterator<any>}
*
* @private
* @function
*/
const typeListCreateIterator = type => {
let n = type._start;
/**
* @type {Array<any>|null}
*/
let currentContent = null;
let currentContentIndex = 0;
return {
[Symbol.iterator] () {
return this
},
next: () => {
// find some content
if (currentContent === null) {
while (n !== null && n.deleted) {
n = n.right;
}
// check if we reached the end, no need to check currentContent, because it does not exist
if (n === null) {
return {
done: true,
value: undefined
}
}
// we found n, so we can set currentContent
currentContent = n.content.getContent();
currentContentIndex = 0;
n = n.right; // we used the content of n, now iterate to next
}
const value = currentContent[currentContentIndex++];
// check if we need to empty currentContent
if (currentContent.length <= currentContentIndex) {
currentContent = null;
}
return {
done: false,
value
}
}
}
};
/**
* @param {AbstractType<any>} type
* @param {number} index
* @return {any}
*
* @private
* @function
*/
const typeListGet = (type, index) => {
const marker = findMarker(type, index);
let n = type._start;
if (marker !== null) {
n = marker.p;
index -= marker.index;
}
for (; n !== null; n = n.right) {
if (!n.deleted && n.countable) {
if (index < n.length) {
return n.content.getContent()[index]
}
index -= n.length;
}
}
};
/**
* @param {Transaction} transaction
* @param {AbstractType<any>} parent
* @param {Item?} referenceItem
* @param {Array<Object<string,any>|Array<any>|boolean|number|null|string|Uint8Array>} content
*
* @private
* @function
*/
const typeListInsertGenericsAfter = (transaction, parent, referenceItem, content) => {
let left = referenceItem;
const doc = transaction.doc;
const ownClientId = doc.clientID;
const store = doc.store;
const right = referenceItem === null ? parent._start : referenceItem.right;
/**
* @type {Array<Object|Array<any>|number|null>}
*/
let jsonContent = [];
const packJsonContent = () => {
if (jsonContent.length > 0) {
left = new Item(createID(ownClientId, getState(store, ownClientId)), left, left && left.lastId, right, right && right.id, parent, null, new ContentAny(jsonContent));
left.integrate(transaction, 0);
jsonContent = [];
}
};
content.forEach(c => {
if (c === null) {
jsonContent.push(c);
} else {
switch (c.constructor) {
case Number:
case Object:
case Boolean:
case Array:
case String:
jsonContent.push(c);
break
default:
packJsonContent();
switch (c.constructor) {
case Uint8Array:
case ArrayBuffer:
left = new Item(createID(ownClientId, getState(store, ownClientId)), left, left && left.lastId, right, right && right.id, parent, null, new ContentBinary(new Uint8Array(/** @type {Uint8Array} */ (c))));
left.integrate(transaction, 0);
break
case Doc:
left = new Item(createID(ownClientId, getState(store, ownClientId)), left, left && left.lastId, right, right && right.id, parent, null, new ContentDoc(/** @type {Doc} */ (c)));
left.integrate(transaction, 0);
break
default:
if (c instanceof AbstractType) {
left = new Item(createID(ownClientId, getState(store, ownClientId)), left, left && left.lastId, right, right && right.id, parent, null, new ContentType(c));
left.integrate(transaction, 0);
} else {
throw new Error('Unexpected content type in insert operation')
}
}
}
}
});
packJsonContent();
};
const lengthExceeded = () => error.create('Length exceeded!');
/**
* @param {Transaction} transaction
* @param {AbstractType<any>} parent
* @param {number} index
* @param {Array<Object<string,any>|Array<any>|number|null|string|Uint8Array>} content
*
* @private
* @function
*/
const typeListInsertGenerics = (transaction, parent, index, content) => {
if (index > parent._length) {
throw lengthExceeded()
}
if (index === 0) {
if (parent._searchMarker) {
updateMarkerChanges(parent._searchMarker, index, content.length);
}
return typeListInsertGenericsAfter(transaction, parent, null, content)
}
const startIndex = index;
const marker = findMarker(parent, index);
let n = parent._start;
if (marker !== null) {
n = marker.p;
index -= marker.index;
// we need to iterate one to the left so that the algorithm works
if (index === 0) {
// @todo refactor this as it actually doesn't consider formats
n = n.prev; // important! get the left undeleted item so that we can actually decrease index
index += (n && n.countable && !n.deleted) ? n.length : 0;
}
}
for (; n !== null; n = n.right) {
if (!n.deleted && n.countable) {
if (index <= n.length) {
if (index < n.length) {
// insert in-between
getItemCleanStart(transaction, createID(n.id.client, n.id.clock + index));
}
break
}
index -= n.length;
}
}
if (parent._searchMarker) {
updateMarkerChanges(parent._searchMarker, startIndex, content.length);
}
return typeListInsertGenericsAfter(transaction, parent, n, content)
};
/**
* Pushing content is special as we generally want to push after the last item. So we don't have to update
* the serach marker.
*
* @param {Transaction} transaction
* @param {AbstractType<any>} parent
* @param {Array<Object<string,any>|Array<any>|number|null|string|Uint8Array>} content
*
* @private
* @function
*/
const typeListPushGenerics = (transaction, parent, content) => {
// Use the marker with the highest index and iterate to the right.
const marker = (parent._searchMarker || []).reduce((maxMarker, currMarker) => currMarker.index > maxMarker.index ? currMarker : maxMarker, { index: 0, p: parent._start });
let n = marker.p;
if (n) {
while (n.right) {
n = n.right;
}
}
return typeListInsertGenericsAfter(transaction, parent, n, content)
};
/**
* @param {Transaction} transaction
* @param {AbstractType<any>} parent
* @param {number} index
* @param {number} length
*
* @private
* @function
*/
const typeListDelete = (transaction, parent, index, length) => {
if (length === 0) { return }
const startIndex = index;
const startLength = length;
const marker = findMarker(parent, index);
let n = parent._start;
if (marker !== null) {
n = marker.p;
index -= marker.index;
}
// compute the first item to be deleted
for (; n !== null && index > 0; n = n.right) {
if (!n.deleted && n.countable) {
if (index < n.length) {
getItemCleanStart(transaction, createID(n.id.client, n.id.clock + index));
}
index -= n.length;
}
}
// delete all items until done
while (length > 0 && n !== null) {
if (!n.deleted) {
if (length < n.length) {
getItemCleanStart(transaction, createID(n.id.client, n.id.clock + length));
}
n.delete(transaction);
length -= n.length;
}
n = n.right;
}
if (length > 0) {
throw lengthExceeded()
}
if (parent._searchMarker) {
updateMarkerChanges(parent._searchMarker, startIndex, -startLength + length /* in case we remove the above exception */);
}
};
/**
* @param {Transaction} transaction
* @param {AbstractType<any>} parent
* @param {string} key
*
* @private
* @function
*/
const typeMapDelete = (transaction, parent, key) => {
const c = parent._map.get(key);
if (c !== undefined) {
c.delete(transaction);
}
};
/**
* @param {Transaction} transaction
* @param {AbstractType<any>} parent
* @param {string} key
* @param {Object|number|null|Array<any>|string|Uint8Array|AbstractType<any>} value
*
* @private
* @function
*/
const typeMapSet = (transaction, parent, key, value) => {
const left = parent._map.get(key) || null;
const doc = transaction.doc;
const ownClientId = doc.clientID;
let content;
if (value == null) {
content = new ContentAny([value]);
} else {
switch (value.constructor) {
case Number:
case Object:
case Boolean:
case Array:
case String:
content = new ContentAny([value]);
break
case Uint8Array:
content = new ContentBinary(/** @type {Uint8Array} */ (value));
break
case Doc:
content = new ContentDoc(/** @type {Doc} */ (value));
break
default:
if (value instanceof AbstractType) {
content = new ContentType(value);
} else {
throw new Error('Unexpected content type')
}
}
}
new Item(createID(ownClientId, getState(doc.store, ownClientId)), left, left && left.lastId, null, null, parent, key, content).integrate(transaction, 0);
};
/**
* @param {AbstractType<any>} parent
* @param {string} key
* @return {Object<string,any>|number|null|Array<any>|string|Uint8Array|AbstractType<any>|undefined}
*
* @private
* @function
*/
const typeMapGet = (parent, key) => {
const val = parent._map.get(key);
return val !== undefined && !val.deleted ? val.content.getContent()[val.length - 1] : undefined
};
/**
* @param {AbstractType<any>} parent
* @return {Object<string,Object<string,any>|number|null|Array<any>|string|Uint8Array|AbstractType<any>|undefined>}
*
* @private
* @function
*/
const typeMapGetAll = (parent) => {
/**
* @type {Object<string,any>}
*/
const res = {};
parent._map.forEach((value, key) => {
if (!value.deleted) {
res[key] = value.content.getContent()[value.length - 1];
}
});
return res
};
/**
* @param {AbstractType<any>} parent
* @param {string} key
* @return {boolean}
*
* @private
* @function
*/
const typeMapHas = (parent, key) => {
const val = parent._map.get(key);
return val !== undefined && !val.deleted
};
/**
* @param {AbstractType<any>} parent
* @param {string} key
* @param {Snapshot} snapshot
* @return {Object<string,any>|number|null|Array<any>|string|Uint8Array|AbstractType<any>|undefined}
*
* @private
* @function
*/
const typeMapGetSnapshot = (parent, key, snapshot) => {
let v = parent._map.get(key) || null;
while (v !== null && (!snapshot.sv.has(v.id.client) || v.id.clock >= (snapshot.sv.get(v.id.client) || 0))) {
v = v.left;
}
return v !== null && isVisible(v, snapshot) ? v.content.getContent()[v.length - 1] : undefined
};
/**
* @param {AbstractType<any>} parent
* @param {Snapshot} snapshot
* @return {Object<string,Object<string,any>|number|null|Array<any>|string|Uint8Array|AbstractType<any>|undefined>}
*
* @private
* @function
*/
const typeMapGetAllSnapshot = (parent, snapshot) => {
/**
* @type {Object<string,any>}
*/
const res = {};
parent._map.forEach((value, key) => {
/**
* @type {Item|null}
*/
let v = value;
while (v !== null && (!snapshot.sv.has(v.id.client) || v.id.clock >= (snapshot.sv.get(v.id.client) || 0))) {
v = v.left;
}
if (v !== null && isVisible(v, snapshot)) {
res[key] = v.content.getContent()[v.length - 1];
}
});
return res
};
/**
* @param {Map<string,Item>} map
* @return {IterableIterator<Array<any>>}
*
* @private
* @function
*/
const createMapIterator = map => iterator.iteratorFilter(map.entries(), /** @param {any} entry */ entry => !entry[1].deleted);
/**
* @module YArray
*/
/**
* Event that describes the changes on a YArray
* @template T
* @extends YEvent<YArray<T>>
*/
class YArrayEvent extends YEvent {}
/**
* A shared Array implementation.
* @template T
* @extends AbstractType<YArrayEvent<T>>
* @implements {Iterable<T>}
*/
class YArray extends AbstractType {
constructor () {
super();
/**
* @type {Array<any>?}
* @private
*/
this._prelimContent = [];
/**
* @type {Array<ArraySearchMarker>}
*/
this._searchMarker = [];
}
/**
* Construct a new YArray containing the specified items.
* @template {Object<string,any>|Array<any>|number|null|string|Uint8Array} T
* @param {Array<T>} items
* @return {YArray<T>}
*/
static from (items) {
/**
* @type {YArray<T>}
*/
const a = new YArray();
a.push(items);
return a
}
/**
* Integrate this type into the Yjs instance.
*
* * Save this struct in the os
* * This type is sent to other client
* * Observer functions are fired
*
* @param {Doc} y The Yjs instance
* @param {Item} item
*/
_integrate (y, item) {
super._integrate(y, item);
this.insert(0, /** @type {Array<any>} */ (this._prelimContent));
this._prelimContent = null;
}
/**
* @return {YArray<T>}
*/
_copy () {
return new YArray()
}
/**
* Makes a copy of this data type that can be included somewhere else.
*
* Note that the content is only readable _after_ it has been included somewhere in the Ydoc.
*
* @return {YArray<T>}
*/
clone () {
/**
* @type {YArray<T>}
*/
const arr = new YArray();
arr.insert(0, this.toArray().map(el =>
el instanceof AbstractType ? /** @type {typeof el} */ (el.clone()) : el
));
return arr
}
get length () {
return this._prelimContent === null ? this._length : this._prelimContent.length
}
/**
* Creates YArrayEvent and calls observers.
*
* @param {Transaction} transaction
* @param {Set<null|string>} parentSubs Keys changed on this type. `null` if list was modified.
*/
_callObserver (transaction, parentSubs) {
super._callObserver(transaction, parentSubs);
callTypeObservers(this, transaction, new YArrayEvent(this, transaction));
}
/**
* Inserts new content at an index.
*
* Important: This function expects an array of content. Not just a content
* object. The reason for this "weirdness" is that inserting several elements
* is very efficient when it is done as a single operation.
*
* @example
* // Insert character 'a' at position 0
* yarray.insert(0, ['a'])
* // Insert numbers 1, 2 at position 1
* yarray.insert(1, [1, 2])
*
* @param {number} index The index to insert content at.
* @param {Array<T>} content The array of content
*/
insert (index, content) {
if (this.doc !== null) {
transact(this.doc, transaction => {
typeListInsertGenerics(transaction, this, index, /** @type {any} */ (content));
});
} else {
/** @type {Array<any>} */ (this._prelimContent).splice(index, 0, ...content);
}
}
/**
* Appends content to this YArray.
*
* @param {Array<T>} content Array of content to append.
*
* @todo Use the following implementation in all types.
*/
push (content) {
if (this.doc !== null) {
transact(this.doc, transaction => {
typeListPushGenerics(transaction, this, /** @type {any} */ (content));
});
} else {
/** @type {Array<any>} */ (this._prelimContent).push(...content);
}
}
/**
* Prepends content to this YArray.
*
* @param {Array<T>} content Array of content to prepend.
*/
unshift (content) {
this.insert(0, content);
}
/**
* Deletes elements starting from an index.
*
* @param {number} index Index at which to start deleting elements
* @param {number} length The number of elements to remove. Defaults to 1.
*/
delete (index, length = 1) {
if (this.doc !== null) {
transact(this.doc, transaction => {
typeListDelete(transaction, this, index, length);
});
} else {
/** @type {Array<any>} */ (this._prelimContent).splice(index, length);
}
}
/**
* Returns the i-th element from a YArray.
*
* @param {number} index The index of the element to return from the YArray
* @return {T}
*/
get (index) {
return typeListGet(this, index)
}
/**
* Transforms this YArray to a JavaScript Array.
*
* @return {Array<T>}
*/
toArray () {
return typeListToArray(this)
}
/**
* Returns a portion of this YArray into a JavaScript Array selected
* from start to end (end not included).
*
* @param {number} [start]
* @param {number} [end]
* @return {Array<T>}
*/
slice (start = 0, end = this.length) {
return typeListSlice(this, start, end)
}
/**
* Transforms this Shared Type to a JSON object.
*
* @return {Array<any>}
*/
toJSON () {
return this.map(c => c instanceof AbstractType ? c.toJSON() : c)
}
/**
* Returns an Array with the result of calling a provided function on every
* element of this YArray.
*
* @template M
* @param {function(T,number,YArray<T>):M} f Function that produces an element of the new Array
* @return {Array<M>} A new array with each element being the result of the
* callback function
*/
map (f) {
return typeListMap(this, /** @type {any} */ (f))
}
/**
* Executes a provided function once on every element of this YArray.
*
* @param {function(T,number,YArray<T>):void} f A function to execute on every element of this YArray.
*/
forEach (f) {
typeListForEach(this, f);
}
/**
* @return {IterableIterator<T>}
*/
[Symbol.iterator] () {
return typeListCreateIterator(this)
}
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
*/
_write (encoder) {
encoder.writeTypeRef(YArrayRefID);
}
}
/**
* @param {UpdateDecoderV1 | UpdateDecoderV2} _decoder
*
* @private
* @function
*/
const readYArray = _decoder => new YArray();
/**
* @module YMap
*/
/**
* @template T
* @extends YEvent<YMap<T>>
* Event that describes the changes on a YMap.
*/
class YMapEvent extends YEvent {
/**
* @param {YMap<T>} ymap The YArray that changed.
* @param {Transaction} transaction
* @param {Set<any>} subs The keys that changed.
*/
constructor (ymap, transaction, subs) {
super(ymap, transaction);
this.keysChanged = subs;
}
}
/**
* @template MapType
* A shared Map implementation.
*
* @extends AbstractType<YMapEvent<MapType>>
* @implements {Iterable<[string, MapType]>}
*/
class YMap extends AbstractType {
/**
*
* @param {Iterable<readonly [string, any]>=} entries - an optional iterable to initialize the YMap
*/
constructor (entries) {
super();
/**
* @type {Map<string,any>?}
* @private
*/
this._prelimContent = null;
if (entries === undefined) {
this._prelimContent = new Map();
} else {
this._prelimContent = new Map(entries);
}
}
/**
* Integrate this type into the Yjs instance.
*
* * Save this struct in the os
* * This type is sent to other client
* * Observer functions are fired
*
* @param {Doc} y The Yjs instance
* @param {Item} item
*/
_integrate (y, item) {
super._integrate(y, item)
;/** @type {Map<string, any>} */ (this._prelimContent).forEach((value, key) => {
this.set(key, value);
});
this._prelimContent = null;
}
/**
* @return {YMap<MapType>}
*/
_copy () {
return new YMap()
}
/**
* Makes a copy of this data type that can be included somewhere else.
*
* Note that the content is only readable _after_ it has been included somewhere in the Ydoc.
*
* @return {YMap<MapType>}
*/
clone () {
/**
* @type {YMap<MapType>}
*/
const map = new YMap();
this.forEach((value, key) => {
map.set(key, value instanceof AbstractType ? /** @type {typeof value} */ (value.clone()) : value);
});
return map
}
/**
* Creates YMapEvent and calls observers.
*
* @param {Transaction} transaction
* @param {Set<null|string>} parentSubs Keys changed on this type. `null` if list was modified.
*/
_callObserver (transaction, parentSubs) {
callTypeObservers(this, transaction, new YMapEvent(this, transaction, parentSubs));
}
/**
* Transforms this Shared Type to a JSON object.
*
* @return {Object<string,any>}
*/
toJSON () {
/**
* @type {Object<string,MapType>}
*/
const map = {};
this._map.forEach((item, key) => {
if (!item.deleted) {
const v = item.content.getContent()[item.length - 1];
map[key] = v instanceof AbstractType ? v.toJSON() : v;
}
});
return map
}
/**
* Returns the size of the YMap (count of key/value pairs)
*
* @return {number}
*/
get size () {
return [...createMapIterator(this._map)].length
}
/**
* Returns the keys for each element in the YMap Type.
*
* @return {IterableIterator<string>}
*/
keys () {
return iterator.iteratorMap(createMapIterator(this._map), /** @param {any} v */ v => v[0])
}
/**
* Returns the values for each element in the YMap Type.
*
* @return {IterableIterator<MapType>}
*/
values () {
return iterator.iteratorMap(createMapIterator(this._map), /** @param {any} v */ v => v[1].content.getContent()[v[1].length - 1])
}
/**
* Returns an Iterator of [key, value] pairs
*
* @return {IterableIterator<[string, MapType]>}
*/
entries () {
return iterator.iteratorMap(createMapIterator(this._map), /** @param {any} v */ v => /** @type {any} */ ([v[0], v[1].content.getContent()[v[1].length - 1]]))
}
/**
* Executes a provided function on once on every key-value pair.
*
* @param {function(MapType,string,YMap<MapType>):void} f A function to execute on every element of this YArray.
*/
forEach (f) {
this._map.forEach((item, key) => {
if (!item.deleted) {
f(item.content.getContent()[item.length - 1], key, this);
}
});
}
/**
* Returns an Iterator of [key, value] pairs
*
* @return {IterableIterator<[string, MapType]>}
*/
[Symbol.iterator] () {
return this.entries()
}
/**
* Remove a specified element from this YMap.
*
* @param {string} key The key of the element to remove.
*/
delete (key) {
if (this.doc !== null) {
transact(this.doc, transaction => {
typeMapDelete(transaction, this, key);
});
} else {
/** @type {Map<string, any>} */ (this._prelimContent).delete(key);
}
}
/**
* Adds or updates an element with a specified key and value.
* @template {MapType} VAL
*
* @param {string} key The key of the element to add to this YMap
* @param {VAL} value The value of the element to add
* @return {VAL}
*/
set (key, value) {
if (this.doc !== null) {
transact(this.doc, transaction => {
typeMapSet(transaction, this, key, /** @type {any} */ (value));
});
} else {
/** @type {Map<string, any>} */ (this._prelimContent).set(key, value);
}
return value
}
/**
* Returns a specified element from this YMap.
*
* @param {string} key
* @return {MapType|undefined}
*/
get (key) {
return /** @type {any} */ (typeMapGet(this, key))
}
/**
* Returns a boolean indicating whether the specified key exists or not.
*
* @param {string} key The key to test.
* @return {boolean}
*/
has (key) {
return typeMapHas(this, key)
}
/**
* Removes all elements from this YMap.
*/
clear () {
if (this.doc !== null) {
transact(this.doc, transaction => {
this.forEach(function (_value, key, map) {
typeMapDelete(transaction, map, key);
});
});
} else {
/** @type {Map<string, any>} */ (this._prelimContent).clear();
}
}
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
*/
_write (encoder) {
encoder.writeTypeRef(YMapRefID);
}
}
/**
* @param {UpdateDecoderV1 | UpdateDecoderV2} _decoder
*
* @private
* @function
*/
const readYMap = _decoder => new YMap();
/**
* @module YText
*/
/**
* @param {any} a
* @param {any} b
* @return {boolean}
*/
const equalAttrs = (a, b) => a === b || (typeof a === 'object' && typeof b === 'object' && a && b && object.equalFlat(a, b));
class ItemTextListPosition {
/**
* @param {Item|null} left
* @param {Item|null} right
* @param {number} index
* @param {Map<string,any>} currentAttributes
*/
constructor (left, right, index, currentAttributes) {
this.left = left;
this.right = right;
this.index = index;
this.currentAttributes = currentAttributes;
}
/**
* Only call this if you know that this.right is defined
*/
forward () {
if (this.right === null) {
error.unexpectedCase();
}
switch (this.right.content.constructor) {
case ContentFormat:
if (!this.right.deleted) {
updateCurrentAttributes(this.currentAttributes, /** @type {ContentFormat} */ (this.right.content));
}
break
default:
if (!this.right.deleted) {
this.index += this.right.length;
}
break
}
this.left = this.right;
this.right = this.right.right;
}
}
/**
* @param {Transaction} transaction
* @param {ItemTextListPosition} pos
* @param {number} count steps to move forward
* @return {ItemTextListPosition}
*
* @private
* @function
*/
const findNextPosition = (transaction, pos, count) => {
while (pos.right !== null && count > 0) {
switch (pos.right.content.constructor) {
case ContentFormat:
if (!pos.right.deleted) {
updateCurrentAttributes(pos.currentAttributes, /** @type {ContentFormat} */ (pos.right.content));
}
break
default:
if (!pos.right.deleted) {
if (count < pos.right.length) {
// split right
getItemCleanStart(transaction, createID(pos.right.id.client, pos.right.id.clock + count));
}
pos.index += pos.right.length;
count -= pos.right.length;
}
break
}
pos.left = pos.right;
pos.right = pos.right.right;
// pos.forward() - we don't forward because that would halve the performance because we already do the checks above
}
return pos
};
/**
* @param {Transaction} transaction
* @param {AbstractType<any>} parent
* @param {number} index
* @param {boolean} useSearchMarker
* @return {ItemTextListPosition}
*
* @private
* @function
*/
const findPosition = (transaction, parent, index, useSearchMarker) => {
const currentAttributes = new Map();
const marker = useSearchMarker ? findMarker(parent, index) : null;
if (marker) {
const pos = new ItemTextListPosition(marker.p.left, marker.p, marker.index, currentAttributes);
return findNextPosition(transaction, pos, index - marker.index)
} else {
const pos = new ItemTextListPosition(null, parent._start, 0, currentAttributes);
return findNextPosition(transaction, pos, index)
}
};
/**
* Negate applied formats
*
* @param {Transaction} transaction
* @param {AbstractType<any>} parent
* @param {ItemTextListPosition} currPos
* @param {Map<string,any>} negatedAttributes
*
* @private
* @function
*/
const insertNegatedAttributes = (transaction, parent, currPos, negatedAttributes) => {
// check if we really need to remove attributes
while (
currPos.right !== null && (
currPos.right.deleted === true || (
currPos.right.content.constructor === ContentFormat &&
equalAttrs(negatedAttributes.get(/** @type {ContentFormat} */ (currPos.right.content).key), /** @type {ContentFormat} */ (currPos.right.content).value)
)
)
) {
if (!currPos.right.deleted) {
negatedAttributes.delete(/** @type {ContentFormat} */ (currPos.right.content).key);
}
currPos.forward();
}
const doc = transaction.doc;
const ownClientId = doc.clientID;
negatedAttributes.forEach((val, key) => {
const left = currPos.left;
const right = currPos.right;
const nextFormat = new Item(createID(ownClientId, getState(doc.store, ownClientId)), left, left && left.lastId, right, right && right.id, parent, null, new ContentFormat(key, val));
nextFormat.integrate(transaction, 0);
currPos.right = nextFormat;
currPos.forward();
});
};
/**
* @param {Map<string,any>} currentAttributes
* @param {ContentFormat} format
*
* @private
* @function
*/
const updateCurrentAttributes = (currentAttributes, format) => {
const { key, value } = format;
if (value === null) {
currentAttributes.delete(key);
} else {
currentAttributes.set(key, value);
}
};
/**
* @param {ItemTextListPosition} currPos
* @param {Object<string,any>} attributes
*
* @private
* @function
*/
const minimizeAttributeChanges = (currPos, attributes) => {
// go right while attributes[right.key] === right.value (or right is deleted)
while (true) {
if (currPos.right === null) {
break
} else if (currPos.right.deleted || (currPos.right.content.constructor === ContentFormat && equalAttrs(attributes[(/** @type {ContentFormat} */ (currPos.right.content)).key] ?? null, /** @type {ContentFormat} */ (currPos.right.content).value))) ; else {
break
}
currPos.forward();
}
};
/**
* @param {Transaction} transaction
* @param {AbstractType<any>} parent
* @param {ItemTextListPosition} currPos
* @param {Object<string,any>} attributes
* @return {Map<string,any>}
*
* @private
* @function
**/
const insertAttributes = (transaction, parent, currPos, attributes) => {
const doc = transaction.doc;
const ownClientId = doc.clientID;
const negatedAttributes = new Map();
// insert format-start items
for (const key in attributes) {
const val = attributes[key];
const currentVal = currPos.currentAttributes.get(key) ?? null;
if (!equalAttrs(currentVal, val)) {
// save negated attribute (set null if currentVal undefined)
negatedAttributes.set(key, currentVal);
const { left, right } = currPos;
currPos.right = new Item(createID(ownClientId, getState(doc.store, ownClientId)), left, left && left.lastId, right, right && right.id, parent, null, new ContentFormat(key, val));
currPos.right.integrate(transaction, 0);
currPos.forward();
}
}
return negatedAttributes
};
/**
* @param {Transaction} transaction
* @param {AbstractType<any>} parent
* @param {ItemTextListPosition} currPos
* @param {string|object|AbstractType<any>} text
* @param {Object<string,any>} attributes
*
* @private
* @function
**/
const insertText = (transaction, parent, currPos, text, attributes) => {
currPos.currentAttributes.forEach((_val, key) => {
if (attributes[key] === undefined) {
attributes[key] = null;
}
});
const doc = transaction.doc;
const ownClientId = doc.clientID;
minimizeAttributeChanges(currPos, attributes);
const negatedAttributes = insertAttributes(transaction, parent, currPos, attributes);
// insert content
const content = text.constructor === String ? new ContentString(/** @type {string} */ (text)) : (text instanceof AbstractType ? new ContentType(text) : new ContentEmbed(text));
let { left, right, index } = currPos;
if (parent._searchMarker) {
updateMarkerChanges(parent._searchMarker, currPos.index, content.getLength());
}
right = new Item(createID(ownClientId, getState(doc.store, ownClientId)), left, left && left.lastId, right, right && right.id, parent, null, content);
right.integrate(transaction, 0);
currPos.right = right;
currPos.index = index;
currPos.forward();
insertNegatedAttributes(transaction, parent, currPos, negatedAttributes);
};
/**
* @param {Transaction} transaction
* @param {AbstractType<any>} parent
* @param {ItemTextListPosition} currPos
* @param {number} length
* @param {Object<string,any>} attributes
*
* @private
* @function
*/
const formatText = (transaction, parent, currPos, length, attributes) => {
const doc = transaction.doc;
const ownClientId = doc.clientID;
minimizeAttributeChanges(currPos, attributes);
const negatedAttributes = insertAttributes(transaction, parent, currPos, attributes);
// iterate until first non-format or null is found
// delete all formats with attributes[format.key] != null
// also check the attributes after the first non-format as we do not want to insert redundant negated attributes there
// eslint-disable-next-line no-labels
iterationLoop: while (
currPos.right !== null &&
(length > 0 ||
(
negatedAttributes.size > 0 &&
(currPos.right.deleted || currPos.right.content.constructor === ContentFormat)
)
)
) {
if (!currPos.right.deleted) {
switch (currPos.right.content.constructor) {
case ContentFormat: {
const { key, value } = /** @type {ContentFormat} */ (currPos.right.content);
const attr = attributes[key];
if (attr !== undefined) {
if (equalAttrs(attr, value)) {
negatedAttributes.delete(key);
} else {
if (length === 0) {
// no need to further extend negatedAttributes
// eslint-disable-next-line no-labels
break iterationLoop
}
negatedAttributes.set(key, value);
}
currPos.right.delete(transaction);
} else {
currPos.currentAttributes.set(key, value);
}
break
}
default:
if (length < currPos.right.length) {
getItemCleanStart(transaction, createID(currPos.right.id.client, currPos.right.id.clock + length));
}
length -= currPos.right.length;
break
}
}
currPos.forward();
}
// Quill just assumes that the editor starts with a newline and that it always
// ends with a newline. We only insert that newline when a new newline is
// inserted - i.e when length is bigger than type.length
if (length > 0) {
let newlines = '';
for (; length > 0; length--) {
newlines += '\n';
}
currPos.right = new Item(createID(ownClientId, getState(doc.store, ownClientId)), currPos.left, currPos.left && currPos.left.lastId, currPos.right, currPos.right && currPos.right.id, parent, null, new ContentString(newlines));
currPos.right.integrate(transaction, 0);
currPos.forward();
}
insertNegatedAttributes(transaction, parent, currPos, negatedAttributes);
};
/**
* Call this function after string content has been deleted in order to
* clean up formatting Items.
*
* @param {Transaction} transaction
* @param {Item} start
* @param {Item|null} curr exclusive end, automatically iterates to the next Content Item
* @param {Map<string,any>} startAttributes
* @param {Map<string,any>} currAttributes
* @return {number} The amount of formatting Items deleted.
*
* @function
*/
const cleanupFormattingGap = (transaction, start, curr, startAttributes, currAttributes) => {
/**
* @type {Item|null}
*/
let end = start;
/**
* @type {Map<string,ContentFormat>}
*/
const endFormats = map.create();
while (end && (!end.countable || end.deleted)) {
if (!end.deleted && end.content.constructor === ContentFormat) {
const cf = /** @type {ContentFormat} */ (end.content);
endFormats.set(cf.key, cf);
}
end = end.right;
}
let cleanups = 0;
let reachedCurr = false;
while (start !== end) {
if (curr === start) {
reachedCurr = true;
}
if (!start.deleted) {
const content = start.content;
switch (content.constructor) {
case ContentFormat: {
const { key, value } = /** @type {ContentFormat} */ (content);
const startAttrValue = startAttributes.get(key) ?? null;
if (endFormats.get(key) !== content || startAttrValue === value) {
// Either this format is overwritten or it is not necessary because the attribute already existed.
start.delete(transaction);
cleanups++;
if (!reachedCurr && (currAttributes.get(key) ?? null) === value && startAttrValue !== value) {
if (startAttrValue === null) {
currAttributes.delete(key);
} else {
currAttributes.set(key, startAttrValue);
}
}
}
if (!reachedCurr && !start.deleted) {
updateCurrentAttributes(currAttributes, /** @type {ContentFormat} */ (content));
}
break
}
}
}
start = /** @type {Item} */ (start.right);
}
return cleanups
};
/**
* @param {Transaction} transaction
* @param {Item | null} item
*/
const cleanupContextlessFormattingGap = (transaction, item) => {
// iterate until item.right is null or content
while (item && item.right && (item.right.deleted || !item.right.countable)) {
item = item.right;
}
const attrs = new Set();
// iterate back until a content item is found
while (item && (item.deleted || !item.countable)) {
if (!item.deleted && item.content.constructor === ContentFormat) {
const key = /** @type {ContentFormat} */ (item.content).key;
if (attrs.has(key)) {
item.delete(transaction);
} else {
attrs.add(key);
}
}
item = item.left;
}
};
/**
* This function is experimental and subject to change / be removed.
*
* Ideally, we don't need this function at all. Formatting attributes should be cleaned up
* automatically after each change. This function iterates twice over the complete YText type
* and removes unnecessary formatting attributes. This is also helpful for testing.
*
* This function won't be exported anymore as soon as there is confidence that the YText type works as intended.
*
* @param {YText} type
* @return {number} How many formatting attributes have been cleaned up.
*/
const cleanupYTextFormatting = type => {
let res = 0;
transact(/** @type {Doc} */ (type.doc), transaction => {
let start = /** @type {Item} */ (type._start);
let end = type._start;
let startAttributes = map.create();
const currentAttributes = map.copy(startAttributes);
while (end) {
if (end.deleted === false) {
switch (end.content.constructor) {
case ContentFormat:
updateCurrentAttributes(currentAttributes, /** @type {ContentFormat} */ (end.content));
break
default:
res += cleanupFormattingGap(transaction, start, end, startAttributes, currentAttributes);
startAttributes = map.copy(currentAttributes);
start = end;
break
}
}
end = end.right;
}
});
return res
};
/**
* This will be called by the transction once the event handlers are called to potentially cleanup
* formatting attributes.
*
* @param {Transaction} transaction
*/
const cleanupYTextAfterTransaction = transaction => {
/**
* @type {Set<YText>}
*/
const needFullCleanup = new Set();
// check if another formatting item was inserted
const doc = transaction.doc;
for (const [client, afterClock] of transaction.afterState.entries()) {
const clock = transaction.beforeState.get(client) || 0;
if (afterClock === clock) {
continue
}
iterateStructs(transaction, /** @type {Array<Item|GC>} */ (doc.store.clients.get(client)), clock, afterClock, item => {
if (
!item.deleted && /** @type {Item} */ (item).content.constructor === ContentFormat && item.constructor !== GC
) {
needFullCleanup.add(/** @type {any} */ (item).parent);
}
});
}
// cleanup in a new transaction
transact(doc, (t) => {
iterateDeletedStructs(transaction, transaction.deleteSet, item => {
if (item instanceof GC || !(/** @type {YText} */ (item.parent)._hasFormatting) || needFullCleanup.has(/** @type {YText} */ (item.parent))) {
return
}
const parent = /** @type {YText} */ (item.parent);
if (item.content.constructor === ContentFormat) {
needFullCleanup.add(parent);
} else {
// If no formatting attribute was inserted or deleted, we can make due with contextless
// formatting cleanups.
// Contextless: it is not necessary to compute currentAttributes for the affected position.
cleanupContextlessFormattingGap(t, item);
}
});
// If a formatting item was inserted, we simply clean the whole type.
// We need to compute currentAttributes for the current position anyway.
for (const yText of needFullCleanup) {
cleanupYTextFormatting(yText);
}
});
};
/**
* @param {Transaction} transaction
* @param {ItemTextListPosition} currPos
* @param {number} length
* @return {ItemTextListPosition}
*
* @private
* @function
*/
const deleteText = (transaction, currPos, length) => {
const startLength = length;
const startAttrs = map.copy(currPos.currentAttributes);
const start = currPos.right;
while (length > 0 && currPos.right !== null) {
if (currPos.right.deleted === false) {
switch (currPos.right.content.constructor) {
case ContentType:
case ContentEmbed:
case ContentString:
if (length < currPos.right.length) {
getItemCleanStart(transaction, createID(currPos.right.id.client, currPos.right.id.clock + length));
}
length -= currPos.right.length;
currPos.right.delete(transaction);
break
}
}
currPos.forward();
}
if (start) {
cleanupFormattingGap(transaction, start, currPos.right, startAttrs, currPos.currentAttributes);
}
const parent = /** @type {AbstractType<any>} */ (/** @type {Item} */ (currPos.left || currPos.right).parent);
if (parent._searchMarker) {
updateMarkerChanges(parent._searchMarker, currPos.index, -startLength + length);
}
return currPos
};
/**
* The Quill Delta format represents changes on a text document with
* formatting information. For mor information visit {@link https://quilljs.com/docs/delta/|Quill Delta}
*
* @example
* {
* ops: [
* { insert: 'Gandalf', attributes: { bold: true } },
* { insert: ' the ' },
* { insert: 'Grey', attributes: { color: '#cccccc' } }
* ]
* }
*
*/
/**
* Attributes that can be assigned to a selection of text.
*
* @example
* {
* bold: true,
* font-size: '40px'
* }
*
* @typedef {Object} TextAttributes
*/
/**
* @extends YEvent<YText>
* Event that describes the changes on a YText type.
*/
class YTextEvent extends YEvent {
/**
* @param {YText} ytext
* @param {Transaction} transaction
* @param {Set<any>} subs The keys that changed
*/
constructor (ytext, transaction, subs) {
super(ytext, transaction);
/**
* Whether the children changed.
* @type {Boolean}
* @private
*/
this.childListChanged = false;
/**
* Set of all changed attributes.
* @type {Set<string>}
*/
this.keysChanged = new Set();
subs.forEach((sub) => {
if (sub === null) {
this.childListChanged = true;
} else {
this.keysChanged.add(sub);
}
});
}
/**
* @type {{added:Set<Item>,deleted:Set<Item>,keys:Map<string,{action:'add'|'update'|'delete',oldValue:any}>,delta:Array<{insert?:Array<any>|string, delete?:number, retain?:number}>}}
*/
get changes () {
if (this._changes === null) {
/**
* @type {{added:Set<Item>,deleted:Set<Item>,keys:Map<string,{action:'add'|'update'|'delete',oldValue:any}>,delta:Array<{insert?:Array<any>|string|AbstractType<any>|object, delete?:number, retain?:number}>}}
*/
const changes = {
keys: this.keys,
delta: this.delta,
added: new Set(),
deleted: new Set()
};
this._changes = changes;
}
return /** @type {any} */ (this._changes)
}
/**
* Compute the changes in the delta format.
* A {@link https://quilljs.com/docs/delta/|Quill Delta}) that represents the changes on the document.
*
* @type {Array<{insert?:string|object|AbstractType<any>, delete?:number, retain?:number, attributes?: Object<string,any>}>}
*
* @public
*/
get delta () {
if (this._delta === null) {
const y = /** @type {Doc} */ (this.target.doc);
/**
* @type {Array<{insert?:string|object|AbstractType<any>, delete?:number, retain?:number, attributes?: Object<string,any>}>}
*/
const delta = [];
transact(y, transaction => {
const currentAttributes = new Map(); // saves all current attributes for insert
const oldAttributes = new Map();
let item = this.target._start;
/**
* @type {string?}
*/
let action = null;
/**
* @type {Object<string,any>}
*/
const attributes = {}; // counts added or removed new attributes for retain
/**
* @type {string|object}
*/
let insert = '';
let retain = 0;
let deleteLen = 0;
const addOp = () => {
if (action !== null) {
/**
* @type {any}
*/
let op = null;
switch (action) {
case 'delete':
if (deleteLen > 0) {
op = { delete: deleteLen };
}
deleteLen = 0;
break
case 'insert':
if (typeof insert === 'object' || insert.length > 0) {
op = { insert };
if (currentAttributes.size > 0) {
op.attributes = {};
currentAttributes.forEach((value, key) => {
if (value !== null) {
op.attributes[key] = value;
}
});
}
}
insert = '';
break
case 'retain':
if (retain > 0) {
op = { retain };
if (!object.isEmpty(attributes)) {
op.attributes = object.assign({}, attributes);
}
}
retain = 0;
break
}
if (op) delta.push(op);
action = null;
}
};
while (item !== null) {
switch (item.content.constructor) {
case ContentType:
case ContentEmbed:
if (this.adds(item)) {
if (!this.deletes(item)) {
addOp();
action = 'insert';
insert = item.content.getContent()[0];
addOp();
}
} else if (this.deletes(item)) {
if (action !== 'delete') {
addOp();
action = 'delete';
}
deleteLen += 1;
} else if (!item.deleted) {
if (action !== 'retain') {
addOp();
action = 'retain';
}
retain += 1;
}
break
case ContentString:
if (this.adds(item)) {
if (!this.deletes(item)) {
if (action !== 'insert') {
addOp();
action = 'insert';
}
insert += /** @type {ContentString} */ (item.content).str;
}
} else if (this.deletes(item)) {
if (action !== 'delete') {
addOp();
action = 'delete';
}
deleteLen += item.length;
} else if (!item.deleted) {
if (action !== 'retain') {
addOp();
action = 'retain';
}
retain += item.length;
}
break
case ContentFormat: {
const { key, value } = /** @type {ContentFormat} */ (item.content);
if (this.adds(item)) {
if (!this.deletes(item)) {
const curVal = currentAttributes.get(key) ?? null;
if (!equalAttrs(curVal, value)) {
if (action === 'retain') {
addOp();
}
if (equalAttrs(value, (oldAttributes.get(key) ?? null))) {
delete attributes[key];
} else {
attributes[key] = value;
}
} else if (value !== null) {
item.delete(transaction);
}
}
} else if (this.deletes(item)) {
oldAttributes.set(key, value);
const curVal = currentAttributes.get(key) ?? null;
if (!equalAttrs(curVal, value)) {
if (action === 'retain') {
addOp();
}
attributes[key] = curVal;
}
} else if (!item.deleted) {
oldAttributes.set(key, value);
const attr = attributes[key];
if (attr !== undefined) {
if (!equalAttrs(attr, value)) {
if (action === 'retain') {
addOp();
}
if (value === null) {
delete attributes[key];
} else {
attributes[key] = value;
}
} else if (attr !== null) { // this will be cleaned up automatically by the contextless cleanup function
item.delete(transaction);
}
}
}
if (!item.deleted) {
if (action === 'insert') {
addOp();
}
updateCurrentAttributes(currentAttributes, /** @type {ContentFormat} */ (item.content));
}
break
}
}
item = item.right;
}
addOp();
while (delta.length > 0) {
const lastOp = delta[delta.length - 1];
if (lastOp.retain !== undefined && lastOp.attributes === undefined) {
// retain delta's if they don't assign attributes
delta.pop();
} else {
break
}
}
});
this._delta = delta;
}
return /** @type {any} */ (this._delta)
}
}
/**
* Type that represents text with formatting information.
*
* This type replaces y-richtext as this implementation is able to handle
* block formats (format information on a paragraph), embeds (complex elements
* like pictures and videos), and text formats (**bold**, *italic*).
*
* @extends AbstractType<YTextEvent>
*/
class YText extends AbstractType {
/**
* @param {String} [string] The initial value of the YText.
*/
constructor (string) {
super();
/**
* Array of pending operations on this type
* @type {Array<function():void>?}
*/
this._pending = string !== undefined ? [() => this.insert(0, string)] : [];
/**
* @type {Array<ArraySearchMarker>|null}
*/
this._searchMarker = [];
/**
* Whether this YText contains formatting attributes.
* This flag is updated when a formatting item is integrated (see ContentFormat.integrate)
*/
this._hasFormatting = false;
}
/**
* Number of characters of this text type.
*
* @type {number}
*/
get length () {
return this._length
}
/**
* @param {Doc} y
* @param {Item} item
*/
_integrate (y, item) {
super._integrate(y, item);
try {
/** @type {Array<function>} */ (this._pending).forEach(f => f());
} catch (e) {
console.error(e);
}
this._pending = null;
}
_copy () {
return new YText()
}
/**
* Makes a copy of this data type that can be included somewhere else.
*
* Note that the content is only readable _after_ it has been included somewhere in the Ydoc.
*
* @return {YText}
*/
clone () {
const text = new YText();
text.applyDelta(this.toDelta());
return text
}
/**
* Creates YTextEvent and calls observers.
*
* @param {Transaction} transaction
* @param {Set<null|string>} parentSubs Keys changed on this type. `null` if list was modified.
*/
_callObserver (transaction, parentSubs) {
super._callObserver(transaction, parentSubs);
const event = new YTextEvent(this, transaction, parentSubs);
callTypeObservers(this, transaction, event);
// If a remote change happened, we try to cleanup potential formatting duplicates.
if (!transaction.local && this._hasFormatting) {
transaction._needFormattingCleanup = true;
}
}
/**
* Returns the unformatted string representation of this YText type.
*
* @public
*/
toString () {
let str = '';
/**
* @type {Item|null}
*/
let n = this._start;
while (n !== null) {
if (!n.deleted && n.countable && n.content.constructor === ContentString) {
str += /** @type {ContentString} */ (n.content).str;
}
n = n.right;
}
return str
}
/**
* Returns the unformatted string representation of this YText type.
*
* @return {string}
* @public
*/
toJSON () {
return this.toString()
}
/**
* Apply a {@link Delta} on this shared YText type.
*
* @param {any} delta The changes to apply on this element.
* @param {object} opts
* @param {boolean} [opts.sanitize] Sanitize input delta. Removes ending newlines if set to true.
*
*
* @public
*/
applyDelta (delta, { sanitize = true } = {}) {
if (this.doc !== null) {
transact(this.doc, transaction => {
const currPos = new ItemTextListPosition(null, this._start, 0, new Map());
for (let i = 0; i < delta.length; i++) {
const op = delta[i];
if (op.insert !== undefined) {
// Quill assumes that the content starts with an empty paragraph.
// Yjs/Y.Text assumes that it starts empty. We always hide that
// there is a newline at the end of the content.
// If we omit this step, clients will see a different number of
// paragraphs, but nothing bad will happen.
const ins = (!sanitize && typeof op.insert === 'string' && i === delta.length - 1 && currPos.right === null && op.insert.slice(-1) === '\n') ? op.insert.slice(0, -1) : op.insert;
if (typeof ins !== 'string' || ins.length > 0) {
insertText(transaction, this, currPos, ins, op.attributes || {});
}
} else if (op.retain !== undefined) {
formatText(transaction, this, currPos, op.retain, op.attributes || {});
} else if (op.delete !== undefined) {
deleteText(transaction, currPos, op.delete);
}
}
});
} else {
/** @type {Array<function>} */ (this._pending).push(() => this.applyDelta(delta));
}
}
/**
* Returns the Delta representation of this YText type.
*
* @param {Snapshot} [snapshot]
* @param {Snapshot} [prevSnapshot]
* @param {function('removed' | 'added', ID):any} [computeYChange]
* @return {any} The Delta representation of this type.
*
* @public
*/
toDelta (snapshot, prevSnapshot, computeYChange) {
/**
* @type{Array<any>}
*/
const ops = [];
const currentAttributes = new Map();
const doc = /** @type {Doc} */ (this.doc);
let str = '';
let n = this._start;
function packStr () {
if (str.length > 0) {
// pack str with attributes to ops
/**
* @type {Object<string,any>}
*/
const attributes = {};
let addAttributes = false;
currentAttributes.forEach((value, key) => {
addAttributes = true;
attributes[key] = value;
});
/**
* @type {Object<string,any>}
*/
const op = { insert: str };
if (addAttributes) {
op.attributes = attributes;
}
ops.push(op);
str = '';
}
}
const computeDelta = () => {
while (n !== null) {
if (isVisible(n, snapshot) || (prevSnapshot !== undefined && isVisible(n, prevSnapshot))) {
switch (n.content.constructor) {
case ContentString: {
const cur = currentAttributes.get('ychange');
if (snapshot !== undefined && !isVisible(n, snapshot)) {
if (cur === undefined || cur.user !== n.id.client || cur.type !== 'removed') {
packStr();
currentAttributes.set('ychange', computeYChange ? computeYChange('removed', n.id) : { type: 'removed' });
}
} else if (prevSnapshot !== undefined && !isVisible(n, prevSnapshot)) {
if (cur === undefined || cur.user !== n.id.client || cur.type !== 'added') {
packStr();
currentAttributes.set('ychange', computeYChange ? computeYChange('added', n.id) : { type: 'added' });
}
} else if (cur !== undefined) {
packStr();
currentAttributes.delete('ychange');
}
str += /** @type {ContentString} */ (n.content).str;
break
}
case ContentType:
case ContentEmbed: {
packStr();
/**
* @type {Object<string,any>}
*/
const op = {
insert: n.content.getContent()[0]
};
if (currentAttributes.size > 0) {
const attrs = /** @type {Object<string,any>} */ ({});
op.attributes = attrs;
currentAttributes.forEach((value, key) => {
attrs[key] = value;
});
}
ops.push(op);
break
}
case ContentFormat:
if (isVisible(n, snapshot)) {
packStr();
updateCurrentAttributes(currentAttributes, /** @type {ContentFormat} */ (n.content));
}
break
}
}
n = n.right;
}
packStr();
};
if (snapshot || prevSnapshot) {
// snapshots are merged again after the transaction, so we need to keep the
// transaction alive until we are done
transact(doc, transaction => {
if (snapshot) {
splitSnapshotAffectedStructs(transaction, snapshot);
}
if (prevSnapshot) {
splitSnapshotAffectedStructs(transaction, prevSnapshot);
}
computeDelta();
}, 'cleanup');
} else {
computeDelta();
}
return ops
}
/**
* Insert text at a given index.
*
* @param {number} index The index at which to start inserting.
* @param {String} text The text to insert at the specified position.
* @param {TextAttributes} [attributes] Optionally define some formatting
* information to apply on the inserted
* Text.
* @public
*/
insert (index, text, attributes) {
if (text.length <= 0) {
return
}
const y = this.doc;
if (y !== null) {
transact(y, transaction => {
const pos = findPosition(transaction, this, index, !attributes);
if (!attributes) {
attributes = {};
// @ts-ignore
pos.currentAttributes.forEach((v, k) => { attributes[k] = v; });
}
insertText(transaction, this, pos, text, attributes);
});
} else {
/** @type {Array<function>} */ (this._pending).push(() => this.insert(index, text, attributes));
}
}
/**
* Inserts an embed at a index.
*
* @param {number} index The index to insert the embed at.
* @param {Object | AbstractType<any>} embed The Object that represents the embed.
* @param {TextAttributes} [attributes] Attribute information to apply on the
* embed
*
* @public
*/
insertEmbed (index, embed, attributes) {
const y = this.doc;
if (y !== null) {
transact(y, transaction => {
const pos = findPosition(transaction, this, index, !attributes);
insertText(transaction, this, pos, embed, attributes || {});
});
} else {
/** @type {Array<function>} */ (this._pending).push(() => this.insertEmbed(index, embed, attributes || {}));
}
}
/**
* Deletes text starting from an index.
*
* @param {number} index Index at which to start deleting.
* @param {number} length The number of characters to remove. Defaults to 1.
*
* @public
*/
delete (index, length) {
if (length === 0) {
return
}
const y = this.doc;
if (y !== null) {
transact(y, transaction => {
deleteText(transaction, findPosition(transaction, this, index, true), length);
});
} else {
/** @type {Array<function>} */ (this._pending).push(() => this.delete(index, length));
}
}
/**
* Assigns properties to a range of text.
*
* @param {number} index The position where to start formatting.
* @param {number} length The amount of characters to assign properties to.
* @param {TextAttributes} attributes Attribute information to apply on the
* text.
*
* @public
*/
format (index, length, attributes) {
if (length === 0) {
return
}
const y = this.doc;
if (y !== null) {
transact(y, transaction => {
const pos = findPosition(transaction, this, index, false);
if (pos.right === null) {
return
}
formatText(transaction, this, pos, length, attributes);
});
} else {
/** @type {Array<function>} */ (this._pending).push(() => this.format(index, length, attributes));
}
}
/**
* Removes an attribute.
*
* @note Xml-Text nodes don't have attributes. You can use this feature to assign properties to complete text-blocks.
*
* @param {String} attributeName The attribute name that is to be removed.
*
* @public
*/
removeAttribute (attributeName) {
if (this.doc !== null) {
transact(this.doc, transaction => {
typeMapDelete(transaction, this, attributeName);
});
} else {
/** @type {Array<function>} */ (this._pending).push(() => this.removeAttribute(attributeName));
}
}
/**
* Sets or updates an attribute.
*
* @note Xml-Text nodes don't have attributes. You can use this feature to assign properties to complete text-blocks.
*
* @param {String} attributeName The attribute name that is to be set.
* @param {any} attributeValue The attribute value that is to be set.
*
* @public
*/
setAttribute (attributeName, attributeValue) {
if (this.doc !== null) {
transact(this.doc, transaction => {
typeMapSet(transaction, this, attributeName, attributeValue);
});
} else {
/** @type {Array<function>} */ (this._pending).push(() => this.setAttribute(attributeName, attributeValue));
}
}
/**
* Returns an attribute value that belongs to the attribute name.
*
* @note Xml-Text nodes don't have attributes. You can use this feature to assign properties to complete text-blocks.
*
* @param {String} attributeName The attribute name that identifies the
* queried value.
* @return {any} The queried attribute value.
*
* @public
*/
getAttribute (attributeName) {
return /** @type {any} */ (typeMapGet(this, attributeName))
}
/**
* Returns all attribute name/value pairs in a JSON Object.
*
* @note Xml-Text nodes don't have attributes. You can use this feature to assign properties to complete text-blocks.
*
* @return {Object<string, any>} A JSON Object that describes the attributes.
*
* @public
*/
getAttributes () {
return typeMapGetAll(this)
}
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
*/
_write (encoder) {
encoder.writeTypeRef(YTextRefID);
}
}
/**
* @param {UpdateDecoderV1 | UpdateDecoderV2} _decoder
* @return {YText}
*
* @private
* @function
*/
const readYText = _decoder => new YText();
/**
* @module YXml
*/
/**
* Define the elements to which a set of CSS queries apply.
* {@link https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors|CSS_Selectors}
*
* @example
* query = '.classSelector'
* query = 'nodeSelector'
* query = '#idSelector'
*
* @typedef {string} CSS_Selector
*/
/**
* Dom filter function.
*
* @callback domFilter
* @param {string} nodeName The nodeName of the element
* @param {Map} attributes The map of attributes.
* @return {boolean} Whether to include the Dom node in the YXmlElement.
*/
/**
* Represents a subset of the nodes of a YXmlElement / YXmlFragment and a
* position within them.
*
* Can be created with {@link YXmlFragment#createTreeWalker}
*
* @public
* @implements {Iterable<YXmlElement|YXmlText|YXmlElement|YXmlHook>}
*/
class YXmlTreeWalker {
/**
* @param {YXmlFragment | YXmlElement} root
* @param {function(AbstractType<any>):boolean} [f]
*/
constructor (root, f = () => true) {
this._filter = f;
this._root = root;
/**
* @type {Item}
*/
this._currentNode = /** @type {Item} */ (root._start);
this._firstCall = true;
}
[Symbol.iterator] () {
return this
}
/**
* Get the next node.
*
* @return {IteratorResult<YXmlElement|YXmlText|YXmlHook>} The next node.
*
* @public
*/
next () {
/**
* @type {Item|null}
*/
let n = this._currentNode;
let type = n && n.content && /** @type {any} */ (n.content).type;
if (n !== null && (!this._firstCall || n.deleted || !this._filter(type))) { // if first call, we check if we can use the first item
do {
type = /** @type {any} */ (n.content).type;
if (!n.deleted && (type.constructor === YXmlElement || type.constructor === YXmlFragment) && type._start !== null) {
// walk down in the tree
n = type._start;
} else {
// walk right or up in the tree
while (n !== null) {
if (n.right !== null) {
n = n.right;
break
} else if (n.parent === this._root) {
n = null;
} else {
n = /** @type {AbstractType<any>} */ (n.parent)._item;
}
}
}
} while (n !== null && (n.deleted || !this._filter(/** @type {ContentType} */ (n.content).type)))
}
this._firstCall = false;
if (n === null) {
// @ts-ignore
return { value: undefined, done: true }
}
this._currentNode = n;
return { value: /** @type {any} */ (n.content).type, done: false }
}
}
/**
* Represents a list of {@link YXmlElement}.and {@link YXmlText} types.
* A YxmlFragment is similar to a {@link YXmlElement}, but it does not have a
* nodeName and it does not have attributes. Though it can be bound to a DOM
* element - in this case the attributes and the nodeName are not shared.
*
* @public
* @extends AbstractType<YXmlEvent>
*/
class YXmlFragment extends AbstractType {
constructor () {
super();
/**
* @type {Array<any>|null}
*/
this._prelimContent = [];
}
/**
* @type {YXmlElement|YXmlText|null}
*/
get firstChild () {
const first = this._first;
return first ? first.content.getContent()[0] : null
}
/**
* Integrate this type into the Yjs instance.
*
* * Save this struct in the os
* * This type is sent to other client
* * Observer functions are fired
*
* @param {Doc} y The Yjs instance
* @param {Item} item
*/
_integrate (y, item) {
super._integrate(y, item);
this.insert(0, /** @type {Array<any>} */ (this._prelimContent));
this._prelimContent = null;
}
_copy () {
return new YXmlFragment()
}
/**
* Makes a copy of this data type that can be included somewhere else.
*
* Note that the content is only readable _after_ it has been included somewhere in the Ydoc.
*
* @return {YXmlFragment}
*/
clone () {
const el = new YXmlFragment();
// @ts-ignore
el.insert(0, this.toArray().map(item => item instanceof AbstractType ? item.clone() : item));
return el
}
get length () {
return this._prelimContent === null ? this._length : this._prelimContent.length
}
/**
* Create a subtree of childNodes.
*
* @example
* const walker = elem.createTreeWalker(dom => dom.nodeName === 'div')
* for (let node in walker) {
* // `node` is a div node
* nop(node)
* }
*
* @param {function(AbstractType<any>):boolean} filter Function that is called on each child element and
* returns a Boolean indicating whether the child
* is to be included in the subtree.
* @return {YXmlTreeWalker} A subtree and a position within it.
*
* @public
*/
createTreeWalker (filter) {
return new YXmlTreeWalker(this, filter)
}
/**
* Returns the first YXmlElement that matches the query.
* Similar to DOM's {@link querySelector}.
*
* Query support:
* - tagname
* TODO:
* - id
* - attribute
*
* @param {CSS_Selector} query The query on the children.
* @return {YXmlElement|YXmlText|YXmlHook|null} The first element that matches the query or null.
*
* @public
*/
querySelector (query) {
query = query.toUpperCase();
// @ts-ignore
const iterator = new YXmlTreeWalker(this, element => element.nodeName && element.nodeName.toUpperCase() === query);
const next = iterator.next();
if (next.done) {
return null
} else {
return next.value
}
}
/**
* Returns all YXmlElements that match the query.
* Similar to Dom's {@link querySelectorAll}.
*
* @todo Does not yet support all queries. Currently only query by tagName.
*
* @param {CSS_Selector} query The query on the children
* @return {Array<YXmlElement|YXmlText|YXmlHook|null>} The elements that match this query.
*
* @public
*/
querySelectorAll (query) {
query = query.toUpperCase();
// @ts-ignore
return array.from(new YXmlTreeWalker(this, element => element.nodeName && element.nodeName.toUpperCase() === query))
}
/**
* Creates YXmlEvent and calls observers.
*
* @param {Transaction} transaction
* @param {Set<null|string>} parentSubs Keys changed on this type. `null` if list was modified.
*/
_callObserver (transaction, parentSubs) {
callTypeObservers(this, transaction, new YXmlEvent(this, parentSubs, transaction));
}
/**
* Get the string representation of all the children of this YXmlFragment.
*
* @return {string} The string representation of all children.
*/
toString () {
return typeListMap(this, xml => xml.toString()).join('')
}
/**
* @return {string}
*/
toJSON () {
return this.toString()
}
/**
* Creates a Dom Element that mirrors this YXmlElement.
*
* @param {Document} [_document=document] The document object (you must define
* this when calling this method in
* nodejs)
* @param {Object<string, any>} [hooks={}] Optional property to customize how hooks
* are presented in the DOM
* @param {any} [binding] You should not set this property. This is
* used if DomBinding wants to create a
* association to the created DOM type.
* @return {Node} The {@link https://developer.mozilla.org/en-US/docs/Web/API/Element|Dom Element}
*
* @public
*/
toDOM (_document = document, hooks = {}, binding) {
const fragment = _document.createDocumentFragment();
if (binding !== undefined) {
binding._createAssociation(fragment, this);
}
typeListForEach(this, xmlType => {
fragment.insertBefore(xmlType.toDOM(_document, hooks, binding), null);
});
return fragment
}
/**
* Inserts new content at an index.
*
* @example
* // Insert character 'a' at position 0
* xml.insert(0, [new Y.XmlText('text')])
*
* @param {number} index The index to insert content at
* @param {Array<YXmlElement|YXmlText>} content The array of content
*/
insert (index, content) {
if (this.doc !== null) {
transact(this.doc, transaction => {
typeListInsertGenerics(transaction, this, index, content);
});
} else {
// @ts-ignore _prelimContent is defined because this is not yet integrated
this._prelimContent.splice(index, 0, ...content);
}
}
/**
* Inserts new content at an index.
*
* @example
* // Insert character 'a' at position 0
* xml.insert(0, [new Y.XmlText('text')])
*
* @param {null|Item|YXmlElement|YXmlText} ref The index to insert content at
* @param {Array<YXmlElement|YXmlText>} content The array of content
*/
insertAfter (ref, content) {
if (this.doc !== null) {
transact(this.doc, transaction => {
const refItem = (ref && ref instanceof AbstractType) ? ref._item : ref;
typeListInsertGenericsAfter(transaction, this, refItem, content);
});
} else {
const pc = /** @type {Array<any>} */ (this._prelimContent);
const index = ref === null ? 0 : pc.findIndex(el => el === ref) + 1;
if (index === 0 && ref !== null) {
throw error.create('Reference item not found')
}
pc.splice(index, 0, ...content);
}
}
/**
* Deletes elements starting from an index.
*
* @param {number} index Index at which to start deleting elements
* @param {number} [length=1] The number of elements to remove. Defaults to 1.
*/
delete (index, length = 1) {
if (this.doc !== null) {
transact(this.doc, transaction => {
typeListDelete(transaction, this, index, length);
});
} else {
// @ts-ignore _prelimContent is defined because this is not yet integrated
this._prelimContent.splice(index, length);
}
}
/**
* Transforms this YArray to a JavaScript Array.
*
* @return {Array<YXmlElement|YXmlText|YXmlHook>}
*/
toArray () {
return typeListToArray(this)
}
/**
* Appends content to this YArray.
*
* @param {Array<YXmlElement|YXmlText>} content Array of content to append.
*/
push (content) {
this.insert(this.length, content);
}
/**
* Prepends content to this YArray.
*
* @param {Array<YXmlElement|YXmlText>} content Array of content to prepend.
*/
unshift (content) {
this.insert(0, content);
}
/**
* Returns the i-th element from a YArray.
*
* @param {number} index The index of the element to return from the YArray
* @return {YXmlElement|YXmlText}
*/
get (index) {
return typeListGet(this, index)
}
/**
* Returns a portion of this YXmlFragment into a JavaScript Array selected
* from start to end (end not included).
*
* @param {number} [start]
* @param {number} [end]
* @return {Array<YXmlElement|YXmlText>}
*/
slice (start = 0, end = this.length) {
return typeListSlice(this, start, end)
}
/**
* Executes a provided function on once on every child element.
*
* @param {function(YXmlElement|YXmlText,number, typeof self):void} f A function to execute on every element of this YArray.
*/
forEach (f) {
typeListForEach(this, f);
}
/**
* Transform the properties of this type to binary and write it to an
* BinaryEncoder.
*
* This is called when this Item is sent to a remote peer.
*
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder The encoder to write data to.
*/
_write (encoder) {
encoder.writeTypeRef(YXmlFragmentRefID);
}
}
/**
* @param {UpdateDecoderV1 | UpdateDecoderV2} _decoder
* @return {YXmlFragment}
*
* @private
* @function
*/
const readYXmlFragment = _decoder => new YXmlFragment();
/**
* @typedef {Object|number|null|Array<any>|string|Uint8Array|AbstractType<any>} ValueTypes
*/
/**
* An YXmlElement imitates the behavior of a
* https://developer.mozilla.org/en-US/docs/Web/API/Element|Dom Element
*
* * An YXmlElement has attributes (key value pairs)
* * An YXmlElement has childElements that must inherit from YXmlElement
*
* @template {{ [key: string]: ValueTypes }} [KV={ [key: string]: string }]
*/
class YXmlElement extends YXmlFragment {
constructor (nodeName = 'UNDEFINED') {
super();
this.nodeName = nodeName;
/**
* @type {Map<string, any>|null}
*/
this._prelimAttrs = new Map();
}
/**
* @type {YXmlElement|YXmlText|null}
*/
get nextSibling () {
const n = this._item ? this._item.next : null;
return n ? /** @type {YXmlElement|YXmlText} */ (/** @type {ContentType} */ (n.content).type) : null
}
/**
* @type {YXmlElement|YXmlText|null}
*/
get prevSibling () {
const n = this._item ? this._item.prev : null;
return n ? /** @type {YXmlElement|YXmlText} */ (/** @type {ContentType} */ (n.content).type) : null
}
/**
* Integrate this type into the Yjs instance.
*
* * Save this struct in the os
* * This type is sent to other client
* * Observer functions are fired
*
* @param {Doc} y The Yjs instance
* @param {Item} item
*/
_integrate (y, item) {
super._integrate(y, item)
;(/** @type {Map<string, any>} */ (this._prelimAttrs)).forEach((value, key) => {
this.setAttribute(key, value);
});
this._prelimAttrs = null;
}
/**
* Creates an Item with the same effect as this Item (without position effect)
*
* @return {YXmlElement}
*/
_copy () {
return new YXmlElement(this.nodeName)
}
/**
* Makes a copy of this data type that can be included somewhere else.
*
* Note that the content is only readable _after_ it has been included somewhere in the Ydoc.
*
* @return {YXmlElement<KV>}
*/
clone () {
/**
* @type {YXmlElement<KV>}
*/
const el = new YXmlElement(this.nodeName);
const attrs = this.getAttributes();
object.forEach(attrs, (value, key) => {
if (typeof value === 'string') {
el.setAttribute(key, value);
}
});
// @ts-ignore
el.insert(0, this.toArray().map(item => item instanceof AbstractType ? item.clone() : item));
return el
}
/**
* Returns the XML serialization of this YXmlElement.
* The attributes are ordered by attribute-name, so you can easily use this
* method to compare YXmlElements
*
* @return {string} The string representation of this type.
*
* @public
*/
toString () {
const attrs = this.getAttributes();
const stringBuilder = [];
const keys = [];
for (const key in attrs) {
keys.push(key);
}
keys.sort();
const keysLen = keys.length;
for (let i = 0; i < keysLen; i++) {
const key = keys[i];
stringBuilder.push(key + '="' + attrs[key] + '"');
}
const nodeName = this.nodeName.toLocaleLowerCase();
const attrsString = stringBuilder.length > 0 ? ' ' + stringBuilder.join(' ') : '';
return `<${nodeName}${attrsString}>${super.toString()}</${nodeName}>`
}
/**
* Removes an attribute from this YXmlElement.
*
* @param {string} attributeName The attribute name that is to be removed.
*
* @public
*/
removeAttribute (attributeName) {
if (this.doc !== null) {
transact(this.doc, transaction => {
typeMapDelete(transaction, this, attributeName);
});
} else {
/** @type {Map<string,any>} */ (this._prelimAttrs).delete(attributeName);
}
}
/**
* Sets or updates an attribute.
*
* @template {keyof KV & string} KEY
*
* @param {KEY} attributeName The attribute name that is to be set.
* @param {KV[KEY]} attributeValue The attribute value that is to be set.
*
* @public
*/
setAttribute (attributeName, attributeValue) {
if (this.doc !== null) {
transact(this.doc, transaction => {
typeMapSet(transaction, this, attributeName, attributeValue);
});
} else {
/** @type {Map<string, any>} */ (this._prelimAttrs).set(attributeName, attributeValue);
}
}
/**
* Returns an attribute value that belongs to the attribute name.
*
* @template {keyof KV & string} KEY
*
* @param {KEY} attributeName The attribute name that identifies the
* queried value.
* @return {KV[KEY]|undefined} The queried attribute value.
*
* @public
*/
getAttribute (attributeName) {
return /** @type {any} */ (typeMapGet(this, attributeName))
}
/**
* Returns whether an attribute exists
*
* @param {string} attributeName The attribute name to check for existence.
* @return {boolean} whether the attribute exists.
*
* @public
*/
hasAttribute (attributeName) {
return /** @type {any} */ (typeMapHas(this, attributeName))
}
/**
* Returns all attribute name/value pairs in a JSON Object.
*
* @param {Snapshot} [snapshot]
* @return {{ [Key in Extract<keyof KV,string>]?: KV[Key]}} A JSON Object that describes the attributes.
*
* @public
*/
getAttributes (snapshot) {
return /** @type {any} */ (snapshot ? typeMapGetAllSnapshot(this, snapshot) : typeMapGetAll(this))
}
/**
* Creates a Dom Element that mirrors this YXmlElement.
*
* @param {Document} [_document=document] The document object (you must define
* this when calling this method in
* nodejs)
* @param {Object<string, any>} [hooks={}] Optional property to customize how hooks
* are presented in the DOM
* @param {any} [binding] You should not set this property. This is
* used if DomBinding wants to create a
* association to the created DOM type.
* @return {Node} The {@link https://developer.mozilla.org/en-US/docs/Web/API/Element|Dom Element}
*
* @public
*/
toDOM (_document = document, hooks = {}, binding) {
const dom = _document.createElement(this.nodeName);
const attrs = this.getAttributes();
for (const key in attrs) {
const value = attrs[key];
if (typeof value === 'string') {
dom.setAttribute(key, value);
}
}
typeListForEach(this, yxml => {
dom.appendChild(yxml.toDOM(_document, hooks, binding));
});
if (binding !== undefined) {
binding._createAssociation(dom, this);
}
return dom
}
/**
* Transform the properties of this type to binary and write it to an
* BinaryEncoder.
*
* This is called when this Item is sent to a remote peer.
*
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder The encoder to write data to.
*/
_write (encoder) {
encoder.writeTypeRef(YXmlElementRefID);
encoder.writeKey(this.nodeName);
}
}
/**
* @param {UpdateDecoderV1 | UpdateDecoderV2} decoder
* @return {YXmlElement}
*
* @function
*/
const readYXmlElement = decoder => new YXmlElement(decoder.readKey());
/**
* @extends YEvent<YXmlElement|YXmlText|YXmlFragment>
* An Event that describes changes on a YXml Element or Yxml Fragment
*/
class YXmlEvent extends YEvent {
/**
* @param {YXmlElement|YXmlText|YXmlFragment} target The target on which the event is created.
* @param {Set<string|null>} subs The set of changed attributes. `null` is included if the
* child list changed.
* @param {Transaction} transaction The transaction instance with wich the
* change was created.
*/
constructor (target, subs, transaction) {
super(target, transaction);
/**
* Whether the children changed.
* @type {Boolean}
* @private
*/
this.childListChanged = false;
/**
* Set of all changed attributes.
* @type {Set<string>}
*/
this.attributesChanged = new Set();
subs.forEach((sub) => {
if (sub === null) {
this.childListChanged = true;
} else {
this.attributesChanged.add(sub);
}
});
}
}
/**
* You can manage binding to a custom type with YXmlHook.
*
* @extends {YMap<any>}
*/
class YXmlHook extends YMap {
/**
* @param {string} hookName nodeName of the Dom Node.
*/
constructor (hookName) {
super();
/**
* @type {string}
*/
this.hookName = hookName;
}
/**
* Creates an Item with the same effect as this Item (without position effect)
*/
_copy () {
return new YXmlHook(this.hookName)
}
/**
* Makes a copy of this data type that can be included somewhere else.
*
* Note that the content is only readable _after_ it has been included somewhere in the Ydoc.
*
* @return {YXmlHook}
*/
clone () {
const el = new YXmlHook(this.hookName);
this.forEach((value, key) => {
el.set(key, value);
});
return el
}
/**
* Creates a Dom Element that mirrors this YXmlElement.
*
* @param {Document} [_document=document] The document object (you must define
* this when calling this method in
* nodejs)
* @param {Object.<string, any>} [hooks] Optional property to customize how hooks
* are presented in the DOM
* @param {any} [binding] You should not set this property. This is
* used if DomBinding wants to create a
* association to the created DOM type
* @return {Element} The {@link https://developer.mozilla.org/en-US/docs/Web/API/Element|Dom Element}
*
* @public
*/
toDOM (_document = document, hooks = {}, binding) {
const hook = hooks[this.hookName];
let dom;
if (hook !== undefined) {
dom = hook.createDom(this);
} else {
dom = document.createElement(this.hookName);
}
dom.setAttribute('data-yjs-hook', this.hookName);
if (binding !== undefined) {
binding._createAssociation(dom, this);
}
return dom
}
/**
* Transform the properties of this type to binary and write it to an
* BinaryEncoder.
*
* This is called when this Item is sent to a remote peer.
*
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder The encoder to write data to.
*/
_write (encoder) {
encoder.writeTypeRef(YXmlHookRefID);
encoder.writeKey(this.hookName);
}
}
/**
* @param {UpdateDecoderV1 | UpdateDecoderV2} decoder
* @return {YXmlHook}
*
* @private
* @function
*/
const readYXmlHook = decoder =>
new YXmlHook(decoder.readKey());
/**
* Represents text in a Dom Element. In the future this type will also handle
* simple formatting information like bold and italic.
*/
class YXmlText extends YText {
/**
* @type {YXmlElement|YXmlText|null}
*/
get nextSibling () {
const n = this._item ? this._item.next : null;
return n ? /** @type {YXmlElement|YXmlText} */ (/** @type {ContentType} */ (n.content).type) : null
}
/**
* @type {YXmlElement|YXmlText|null}
*/
get prevSibling () {
const n = this._item ? this._item.prev : null;
return n ? /** @type {YXmlElement|YXmlText} */ (/** @type {ContentType} */ (n.content).type) : null
}
_copy () {
return new YXmlText()
}
/**
* Makes a copy of this data type that can be included somewhere else.
*
* Note that the content is only readable _after_ it has been included somewhere in the Ydoc.
*
* @return {YXmlText}
*/
clone () {
const text = new YXmlText();
text.applyDelta(this.toDelta());
return text
}
/**
* Creates a Dom Element that mirrors this YXmlText.
*
* @param {Document} [_document=document] The document object (you must define
* this when calling this method in
* nodejs)
* @param {Object<string, any>} [hooks] Optional property to customize how hooks
* are presented in the DOM
* @param {any} [binding] You should not set this property. This is
* used if DomBinding wants to create a
* association to the created DOM type.
* @return {Text} The {@link https://developer.mozilla.org/en-US/docs/Web/API/Element|Dom Element}
*
* @public
*/
toDOM (_document = document, hooks, binding) {
const dom = _document.createTextNode(this.toString());
if (binding !== undefined) {
binding._createAssociation(dom, this);
}
return dom
}
toString () {
// @ts-ignore
return this.toDelta().map(delta => {
const nestedNodes = [];
for (const nodeName in delta.attributes) {
const attrs = [];
for (const key in delta.attributes[nodeName]) {
attrs.push({ key, value: delta.attributes[nodeName][key] });
}
// sort attributes to get a unique order
attrs.sort((a, b) => a.key < b.key ? -1 : 1);
nestedNodes.push({ nodeName, attrs });
}
// sort node order to get a unique order
nestedNodes.sort((a, b) => a.nodeName < b.nodeName ? -1 : 1);
// now convert to dom string
let str = '';
for (let i = 0; i < nestedNodes.length; i++) {
const node = nestedNodes[i];
str += `<${node.nodeName}`;
for (let j = 0; j < node.attrs.length; j++) {
const attr = node.attrs[j];
str += ` ${attr.key}="${attr.value}"`;
}
str += '>';
}
str += delta.insert;
for (let i = nestedNodes.length - 1; i >= 0; i--) {
str += `</${nestedNodes[i].nodeName}>`;
}
return str
}).join('')
}
/**
* @return {string}
*/
toJSON () {
return this.toString()
}
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
*/
_write (encoder) {
encoder.writeTypeRef(YXmlTextRefID);
}
}
/**
* @param {UpdateDecoderV1 | UpdateDecoderV2} decoder
* @return {YXmlText}
*
* @private
* @function
*/
const readYXmlText = decoder => new YXmlText();
class AbstractStruct {
/**
* @param {ID} id
* @param {number} length
*/
constructor (id, length) {
this.id = id;
this.length = length;
}
/**
* @type {boolean}
*/
get deleted () {
throw error.methodUnimplemented()
}
/**
* Merge this struct with the item to the right.
* This method is already assuming that `this.id.clock + this.length === this.id.clock`.
* Also this method does *not* remove right from StructStore!
* @param {AbstractStruct} right
* @return {boolean} wether this merged with right
*/
mergeWith (right) {
return false
}
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder The encoder to write data to.
* @param {number} offset
* @param {number} encodingRef
*/
write (encoder, offset, encodingRef) {
throw error.methodUnimplemented()
}
/**
* @param {Transaction} transaction
* @param {number} offset
*/
integrate (transaction, offset) {
throw error.methodUnimplemented()
}
}
const structGCRefNumber = 0;
/**
* @private
*/
class GC extends AbstractStruct {
get deleted () {
return true
}
delete () {}
/**
* @param {GC} right
* @return {boolean}
*/
mergeWith (right) {
if (this.constructor !== right.constructor) {
return false
}
this.length += right.length;
return true
}
/**
* @param {Transaction} transaction
* @param {number} offset
*/
integrate (transaction, offset) {
if (offset > 0) {
this.id.clock += offset;
this.length -= offset;
}
addStruct(transaction.doc.store, this);
}
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
* @param {number} offset
*/
write (encoder, offset) {
encoder.writeInfo(structGCRefNumber);
encoder.writeLen(this.length - offset);
}
/**
* @param {Transaction} transaction
* @param {StructStore} store
* @return {null | number}
*/
getMissing (transaction, store) {
return null
}
}
class ContentBinary {
/**
* @param {Uint8Array} content
*/
constructor (content) {
this.content = content;
}
/**
* @return {number}
*/
getLength () {
return 1
}
/**
* @return {Array<any>}
*/
getContent () {
return [this.content]
}
/**
* @return {boolean}
*/
isCountable () {
return true
}
/**
* @return {ContentBinary}
*/
copy () {
return new ContentBinary(this.content)
}
/**
* @param {number} offset
* @return {ContentBinary}
*/
splice (offset) {
throw error.methodUnimplemented()
}
/**
* @param {ContentBinary} right
* @return {boolean}
*/
mergeWith (right) {
return false
}
/**
* @param {Transaction} transaction
* @param {Item} item
*/
integrate (transaction, item) {}
/**
* @param {Transaction} transaction
*/
delete (transaction) {}
/**
* @param {StructStore} store
*/
gc (store) {}
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
* @param {number} offset
*/
write (encoder, offset) {
encoder.writeBuf(this.content);
}
/**
* @return {number}
*/
getRef () {
return 3
}
}
/**
* @param {UpdateDecoderV1 | UpdateDecoderV2 } decoder
* @return {ContentBinary}
*/
const readContentBinary = decoder => new ContentBinary(decoder.readBuf());
class ContentDeleted {
/**
* @param {number} len
*/
constructor (len) {
this.len = len;
}
/**
* @return {number}
*/
getLength () {
return this.len
}
/**
* @return {Array<any>}
*/
getContent () {
return []
}
/**
* @return {boolean}
*/
isCountable () {
return false
}
/**
* @return {ContentDeleted}
*/
copy () {
return new ContentDeleted(this.len)
}
/**
* @param {number} offset
* @return {ContentDeleted}
*/
splice (offset) {
const right = new ContentDeleted(this.len - offset);
this.len = offset;
return right
}
/**
* @param {ContentDeleted} right
* @return {boolean}
*/
mergeWith (right) {
this.len += right.len;
return true
}
/**
* @param {Transaction} transaction
* @param {Item} item
*/
integrate (transaction, item) {
addToDeleteSet(transaction.deleteSet, item.id.client, item.id.clock, this.len);
item.markDeleted();
}
/**
* @param {Transaction} transaction
*/
delete (transaction) {}
/**
* @param {StructStore} store
*/
gc (store) {}
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
* @param {number} offset
*/
write (encoder, offset) {
encoder.writeLen(this.len - offset);
}
/**
* @return {number}
*/
getRef () {
return 1
}
}
/**
* @private
*
* @param {UpdateDecoderV1 | UpdateDecoderV2 } decoder
* @return {ContentDeleted}
*/
const readContentDeleted = decoder => new ContentDeleted(decoder.readLen());
/**
* @param {string} guid
* @param {Object<string, any>} opts
*/
const createDocFromOpts = (guid, opts) => new Doc({ guid, ...opts, shouldLoad: opts.shouldLoad || opts.autoLoad || false });
/**
* @private
*/
class ContentDoc {
/**
* @param {Doc} doc
*/
constructor (doc) {
if (doc._item) {
console.error('This document was already integrated as a sub-document. You should create a second instance instead with the same guid.');
}
/**
* @type {Doc}
*/
this.doc = doc;
/**
* @type {any}
*/
const opts = {};
this.opts = opts;
if (!doc.gc) {
opts.gc = false;
}
if (doc.autoLoad) {
opts.autoLoad = true;
}
if (doc.meta !== null) {
opts.meta = doc.meta;
}
}
/**
* @return {number}
*/
getLength () {
return 1
}
/**
* @return {Array<any>}
*/
getContent () {
return [this.doc]
}
/**
* @return {boolean}
*/
isCountable () {
return true
}
/**
* @return {ContentDoc}
*/
copy () {
return new ContentDoc(createDocFromOpts(this.doc.guid, this.opts))
}
/**
* @param {number} offset
* @return {ContentDoc}
*/
splice (offset) {
throw error.methodUnimplemented()
}
/**
* @param {ContentDoc} right
* @return {boolean}
*/
mergeWith (right) {
return false
}
/**
* @param {Transaction} transaction
* @param {Item} item
*/
integrate (transaction, item) {
// this needs to be reflected in doc.destroy as well
this.doc._item = item;
transaction.subdocsAdded.add(this.doc);
if (this.doc.shouldLoad) {
transaction.subdocsLoaded.add(this.doc);
}
}
/**
* @param {Transaction} transaction
*/
delete (transaction) {
if (transaction.subdocsAdded.has(this.doc)) {
transaction.subdocsAdded.delete(this.doc);
} else {
transaction.subdocsRemoved.add(this.doc);
}
}
/**
* @param {StructStore} store
*/
gc (store) { }
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
* @param {number} offset
*/
write (encoder, offset) {
encoder.writeString(this.doc.guid);
encoder.writeAny(this.opts);
}
/**
* @return {number}
*/
getRef () {
return 9
}
}
/**
* @private
*
* @param {UpdateDecoderV1 | UpdateDecoderV2} decoder
* @return {ContentDoc}
*/
const readContentDoc = decoder => new ContentDoc(createDocFromOpts(decoder.readString(), decoder.readAny()));
/**
* @private
*/
class ContentEmbed {
/**
* @param {Object} embed
*/
constructor (embed) {
this.embed = embed;
}
/**
* @return {number}
*/
getLength () {
return 1
}
/**
* @return {Array<any>}
*/
getContent () {
return [this.embed]
}
/**
* @return {boolean}
*/
isCountable () {
return true
}
/**
* @return {ContentEmbed}
*/
copy () {
return new ContentEmbed(this.embed)
}
/**
* @param {number} offset
* @return {ContentEmbed}
*/
splice (offset) {
throw error.methodUnimplemented()
}
/**
* @param {ContentEmbed} right
* @return {boolean}
*/
mergeWith (right) {
return false
}
/**
* @param {Transaction} transaction
* @param {Item} item
*/
integrate (transaction, item) {}
/**
* @param {Transaction} transaction
*/
delete (transaction) {}
/**
* @param {StructStore} store
*/
gc (store) {}
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
* @param {number} offset
*/
write (encoder, offset) {
encoder.writeJSON(this.embed);
}
/**
* @return {number}
*/
getRef () {
return 5
}
}
/**
* @private
*
* @param {UpdateDecoderV1 | UpdateDecoderV2} decoder
* @return {ContentEmbed}
*/
const readContentEmbed = decoder => new ContentEmbed(decoder.readJSON());
/**
* @private
*/
class ContentFormat {
/**
* @param {string} key
* @param {Object} value
*/
constructor (key, value) {
this.key = key;
this.value = value;
}
/**
* @return {number}
*/
getLength () {
return 1
}
/**
* @return {Array<any>}
*/
getContent () {
return []
}
/**
* @return {boolean}
*/
isCountable () {
return false
}
/**
* @return {ContentFormat}
*/
copy () {
return new ContentFormat(this.key, this.value)
}
/**
* @param {number} _offset
* @return {ContentFormat}
*/
splice (_offset) {
throw error.methodUnimplemented()
}
/**
* @param {ContentFormat} _right
* @return {boolean}
*/
mergeWith (_right) {
return false
}
/**
* @param {Transaction} _transaction
* @param {Item} item
*/
integrate (_transaction, item) {
// @todo searchmarker are currently unsupported for rich text documents
const p = /** @type {YText} */ (item.parent);
p._searchMarker = null;
p._hasFormatting = true;
}
/**
* @param {Transaction} transaction
*/
delete (transaction) {}
/**
* @param {StructStore} store
*/
gc (store) {}
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
* @param {number} offset
*/
write (encoder, offset) {
encoder.writeKey(this.key);
encoder.writeJSON(this.value);
}
/**
* @return {number}
*/
getRef () {
return 6
}
}
/**
* @param {UpdateDecoderV1 | UpdateDecoderV2} decoder
* @return {ContentFormat}
*/
const readContentFormat = decoder => new ContentFormat(decoder.readKey(), decoder.readJSON());
/**
* @private
*/
class ContentJSON {
/**
* @param {Array<any>} arr
*/
constructor (arr) {
/**
* @type {Array<any>}
*/
this.arr = arr;
}
/**
* @return {number}
*/
getLength () {
return this.arr.length
}
/**
* @return {Array<any>}
*/
getContent () {
return this.arr
}
/**
* @return {boolean}
*/
isCountable () {
return true
}
/**
* @return {ContentJSON}
*/
copy () {
return new ContentJSON(this.arr)
}
/**
* @param {number} offset
* @return {ContentJSON}
*/
splice (offset) {
const right = new ContentJSON(this.arr.slice(offset));
this.arr = this.arr.slice(0, offset);
return right
}
/**
* @param {ContentJSON} right
* @return {boolean}
*/
mergeWith (right) {
this.arr = this.arr.concat(right.arr);
return true
}
/**
* @param {Transaction} transaction
* @param {Item} item
*/
integrate (transaction, item) {}
/**
* @param {Transaction} transaction
*/
delete (transaction) {}
/**
* @param {StructStore} store
*/
gc (store) {}
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
* @param {number} offset
*/
write (encoder, offset) {
const len = this.arr.length;
encoder.writeLen(len - offset);
for (let i = offset; i < len; i++) {
const c = this.arr[i];
encoder.writeString(c === undefined ? 'undefined' : JSON.stringify(c));
}
}
/**
* @return {number}
*/
getRef () {
return 2
}
}
/**
* @private
*
* @param {UpdateDecoderV1 | UpdateDecoderV2} decoder
* @return {ContentJSON}
*/
const readContentJSON = decoder => {
const len = decoder.readLen();
const cs = [];
for (let i = 0; i < len; i++) {
const c = decoder.readString();
if (c === 'undefined') {
cs.push(undefined);
} else {
cs.push(JSON.parse(c));
}
}
return new ContentJSON(cs)
};
class ContentAny {
/**
* @param {Array<any>} arr
*/
constructor (arr) {
/**
* @type {Array<any>}
*/
this.arr = arr;
}
/**
* @return {number}
*/
getLength () {
return this.arr.length
}
/**
* @return {Array<any>}
*/
getContent () {
return this.arr
}
/**
* @return {boolean}
*/
isCountable () {
return true
}
/**
* @return {ContentAny}
*/
copy () {
return new ContentAny(this.arr)
}
/**
* @param {number} offset
* @return {ContentAny}
*/
splice (offset) {
const right = new ContentAny(this.arr.slice(offset));
this.arr = this.arr.slice(0, offset);
return right
}
/**
* @param {ContentAny} right
* @return {boolean}
*/
mergeWith (right) {
this.arr = this.arr.concat(right.arr);
return true
}
/**
* @param {Transaction} transaction
* @param {Item} item
*/
integrate (transaction, item) {}
/**
* @param {Transaction} transaction
*/
delete (transaction) {}
/**
* @param {StructStore} store
*/
gc (store) {}
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
* @param {number} offset
*/
write (encoder, offset) {
const len = this.arr.length;
encoder.writeLen(len - offset);
for (let i = offset; i < len; i++) {
const c = this.arr[i];
encoder.writeAny(c);
}
}
/**
* @return {number}
*/
getRef () {
return 8
}
}
/**
* @param {UpdateDecoderV1 | UpdateDecoderV2} decoder
* @return {ContentAny}
*/
const readContentAny = decoder => {
const len = decoder.readLen();
const cs = [];
for (let i = 0; i < len; i++) {
cs.push(decoder.readAny());
}
return new ContentAny(cs)
};
/**
* @private
*/
class ContentString {
/**
* @param {string} str
*/
constructor (str) {
/**
* @type {string}
*/
this.str = str;
}
/**
* @return {number}
*/
getLength () {
return this.str.length
}
/**
* @return {Array<any>}
*/
getContent () {
return this.str.split('')
}
/**
* @return {boolean}
*/
isCountable () {
return true
}
/**
* @return {ContentString}
*/
copy () {
return new ContentString(this.str)
}
/**
* @param {number} offset
* @return {ContentString}
*/
splice (offset) {
const right = new ContentString(this.str.slice(offset));
this.str = this.str.slice(0, offset);
// Prevent encoding invalid documents because of splitting of surrogate pairs: https://github.com/yjs/yjs/issues/248
const firstCharCode = this.str.charCodeAt(offset - 1);
if (firstCharCode >= 0xD800 && firstCharCode <= 0xDBFF) {
// Last character of the left split is the start of a surrogate utf16/ucs2 pair.
// We don't support splitting of surrogate pairs because this may lead to invalid documents.
// Replace the invalid character with a unicode replacement character (<28> / U+FFFD)
this.str = this.str.slice(0, offset - 1) + '<27>';
// replace right as well
right.str = '<27>' + right.str.slice(1);
}
return right
}
/**
* @param {ContentString} right
* @return {boolean}
*/
mergeWith (right) {
this.str += right.str;
return true
}
/**
* @param {Transaction} transaction
* @param {Item} item
*/
integrate (transaction, item) {}
/**
* @param {Transaction} transaction
*/
delete (transaction) {}
/**
* @param {StructStore} store
*/
gc (store) {}
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
* @param {number} offset
*/
write (encoder, offset) {
encoder.writeString(offset === 0 ? this.str : this.str.slice(offset));
}
/**
* @return {number}
*/
getRef () {
return 4
}
}
/**
* @private
*
* @param {UpdateDecoderV1 | UpdateDecoderV2} decoder
* @return {ContentString}
*/
const readContentString = decoder => new ContentString(decoder.readString());
/**
* @type {Array<function(UpdateDecoderV1 | UpdateDecoderV2):AbstractType<any>>}
* @private
*/
const typeRefs = [
readYArray,
readYMap,
readYText,
readYXmlElement,
readYXmlFragment,
readYXmlHook,
readYXmlText
];
const YArrayRefID = 0;
const YMapRefID = 1;
const YTextRefID = 2;
const YXmlElementRefID = 3;
const YXmlFragmentRefID = 4;
const YXmlHookRefID = 5;
const YXmlTextRefID = 6;
/**
* @private
*/
class ContentType {
/**
* @param {AbstractType<any>} type
*/
constructor (type) {
/**
* @type {AbstractType<any>}
*/
this.type = type;
}
/**
* @return {number}
*/
getLength () {
return 1
}
/**
* @return {Array<any>}
*/
getContent () {
return [this.type]
}
/**
* @return {boolean}
*/
isCountable () {
return true
}
/**
* @return {ContentType}
*/
copy () {
return new ContentType(this.type._copy())
}
/**
* @param {number} offset
* @return {ContentType}
*/
splice (offset) {
throw error.methodUnimplemented()
}
/**
* @param {ContentType} right
* @return {boolean}
*/
mergeWith (right) {
return false
}
/**
* @param {Transaction} transaction
* @param {Item} item
*/
integrate (transaction, item) {
this.type._integrate(transaction.doc, item);
}
/**
* @param {Transaction} transaction
*/
delete (transaction) {
let item = this.type._start;
while (item !== null) {
if (!item.deleted) {
item.delete(transaction);
} else if (item.id.clock < (transaction.beforeState.get(item.id.client) || 0)) {
// This will be gc'd later and we want to merge it if possible
// We try to merge all deleted items after each transaction,
// but we have no knowledge about that this needs to be merged
// since it is not in transaction.ds. Hence we add it to transaction._mergeStructs
transaction._mergeStructs.push(item);
}
item = item.right;
}
this.type._map.forEach(item => {
if (!item.deleted) {
item.delete(transaction);
} else if (item.id.clock < (transaction.beforeState.get(item.id.client) || 0)) {
// same as above
transaction._mergeStructs.push(item);
}
});
transaction.changed.delete(this.type);
}
/**
* @param {StructStore} store
*/
gc (store) {
let item = this.type._start;
while (item !== null) {
item.gc(store, true);
item = item.right;
}
this.type._start = null;
this.type._map.forEach(/** @param {Item | null} item */ (item) => {
while (item !== null) {
item.gc(store, true);
item = item.left;
}
});
this.type._map = new Map();
}
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
* @param {number} offset
*/
write (encoder, offset) {
this.type._write(encoder);
}
/**
* @return {number}
*/
getRef () {
return 7
}
}
/**
* @private
*
* @param {UpdateDecoderV1 | UpdateDecoderV2} decoder
* @return {ContentType}
*/
const readContentType = decoder => new ContentType(typeRefs[decoder.readTypeRef()](decoder));
/**
* @todo This should return several items
*
* @param {StructStore} store
* @param {ID} id
* @return {{item:Item, diff:number}}
*/
const followRedone = (store, id) => {
/**
* @type {ID|null}
*/
let nextID = id;
let diff = 0;
let item;
do {
if (diff > 0) {
nextID = createID(nextID.client, nextID.clock + diff);
}
item = getItem(store, nextID);
diff = nextID.clock - item.id.clock;
nextID = item.redone;
} while (nextID !== null && item instanceof Item)
return {
item, diff
}
};
/**
* Make sure that neither item nor any of its parents is ever deleted.
*
* This property does not persist when storing it into a database or when
* sending it to other peers
*
* @param {Item|null} item
* @param {boolean} keep
*/
const keepItem = (item, keep) => {
while (item !== null && item.keep !== keep) {
item.keep = keep;
item = /** @type {AbstractType<any>} */ (item.parent)._item;
}
};
/**
* Split leftItem into two items
* @param {Transaction} transaction
* @param {Item} leftItem
* @param {number} diff
* @return {Item}
*
* @function
* @private
*/
const splitItem = (transaction, leftItem, diff) => {
// create rightItem
const { client, clock } = leftItem.id;
const rightItem = new Item(
createID(client, clock + diff),
leftItem,
createID(client, clock + diff - 1),
leftItem.right,
leftItem.rightOrigin,
leftItem.parent,
leftItem.parentSub,
leftItem.content.splice(diff)
);
if (leftItem.deleted) {
rightItem.markDeleted();
}
if (leftItem.keep) {
rightItem.keep = true;
}
if (leftItem.redone !== null) {
rightItem.redone = createID(leftItem.redone.client, leftItem.redone.clock + diff);
}
// update left (do not set leftItem.rightOrigin as it will lead to problems when syncing)
leftItem.right = rightItem;
// update right
if (rightItem.right !== null) {
rightItem.right.left = rightItem;
}
// right is more specific.
transaction._mergeStructs.push(rightItem);
// update parent._map
if (rightItem.parentSub !== null && rightItem.right === null) {
/** @type {AbstractType<any>} */ (rightItem.parent)._map.set(rightItem.parentSub, rightItem);
}
leftItem.length = diff;
return rightItem
};
/**
* @param {Array<StackItem>} stack
* @param {ID} id
*/
const isDeletedByUndoStack = (stack, id) => array.some(stack, /** @param {StackItem} s */ s => isDeleted(s.deletions, id));
/**
* Redoes the effect of this operation.
*
* @param {Transaction} transaction The Yjs instance.
* @param {Item} item
* @param {Set<Item>} redoitems
* @param {DeleteSet} itemsToDelete
* @param {boolean} ignoreRemoteMapChanges
* @param {import('../utils/UndoManager.js').UndoManager} um
*
* @return {Item|null}
*
* @private
*/
const redoItem = (transaction, item, redoitems, itemsToDelete, ignoreRemoteMapChanges, um) => {
const doc = transaction.doc;
const store = doc.store;
const ownClientID = doc.clientID;
const redone = item.redone;
if (redone !== null) {
return getItemCleanStart(transaction, redone)
}
let parentItem = /** @type {AbstractType<any>} */ (item.parent)._item;
/**
* @type {Item|null}
*/
let left = null;
/**
* @type {Item|null}
*/
let right;
// make sure that parent is redone
if (parentItem !== null && parentItem.deleted === true) {
// try to undo parent if it will be undone anyway
if (parentItem.redone === null && (!redoitems.has(parentItem) || redoItem(transaction, parentItem, redoitems, itemsToDelete, ignoreRemoteMapChanges, um) === null)) {
return null
}
while (parentItem.redone !== null) {
parentItem = getItemCleanStart(transaction, parentItem.redone);
}
}
const parentType = parentItem === null ? /** @type {AbstractType<any>} */ (item.parent) : /** @type {ContentType} */ (parentItem.content).type;
if (item.parentSub === null) {
// Is an array item. Insert at the old position
left = item.left;
right = item;
// find next cloned_redo items
while (left !== null) {
/**
* @type {Item|null}
*/
let leftTrace = left;
// trace redone until parent matches
while (leftTrace !== null && /** @type {AbstractType<any>} */ (leftTrace.parent)._item !== parentItem) {
leftTrace = leftTrace.redone === null ? null : getItemCleanStart(transaction, leftTrace.redone);
}
if (leftTrace !== null && /** @type {AbstractType<any>} */ (leftTrace.parent)._item === parentItem) {
left = leftTrace;
break
}
left = left.left;
}
while (right !== null) {
/**
* @type {Item|null}
*/
let rightTrace = right;
// trace redone until parent matches
while (rightTrace !== null && /** @type {AbstractType<any>} */ (rightTrace.parent)._item !== parentItem) {
rightTrace = rightTrace.redone === null ? null : getItemCleanStart(transaction, rightTrace.redone);
}
if (rightTrace !== null && /** @type {AbstractType<any>} */ (rightTrace.parent)._item === parentItem) {
right = rightTrace;
break
}
right = right.right;
}
} else {
right = null;
if (item.right && !ignoreRemoteMapChanges) {
left = item;
// Iterate right while right is in itemsToDelete
// If it is intended to delete right while item is redone, we can expect that item should replace right.
while (left !== null && left.right !== null && (left.right.redone || isDeleted(itemsToDelete, left.right.id) || isDeletedByUndoStack(um.undoStack, left.right.id) || isDeletedByUndoStack(um.redoStack, left.right.id))) {
left = left.right;
// follow redone
while (left.redone) left = getItemCleanStart(transaction, left.redone);
}
if (left && left.right !== null) {
// It is not possible to redo this item because it conflicts with a
// change from another client
return null
}
} else {
left = parentType._map.get(item.parentSub) || null;
}
}
const nextClock = getState(store, ownClientID);
const nextId = createID(ownClientID, nextClock);
const redoneItem = new Item(
nextId,
left, left && left.lastId,
right, right && right.id,
parentType,
item.parentSub,
item.content.copy()
);
item.redone = nextId;
keepItem(redoneItem, true);
redoneItem.integrate(transaction, 0);
return redoneItem
};
/**
* Abstract class that represents any content.
*/
class Item extends AbstractStruct {
/**
* @param {ID} id
* @param {Item | null} left
* @param {ID | null} origin
* @param {Item | null} right
* @param {ID | null} rightOrigin
* @param {AbstractType<any>|ID|null} parent Is a type if integrated, is null if it is possible to copy parent from left or right, is ID before integration to search for it.
* @param {string | null} parentSub
* @param {AbstractContent} content
*/
constructor (id, left, origin, right, rightOrigin, parent, parentSub, content) {
super(id, content.getLength());
/**
* The item that was originally to the left of this item.
* @type {ID | null}
*/
this.origin = origin;
/**
* The item that is currently to the left of this item.
* @type {Item | null}
*/
this.left = left;
/**
* The item that is currently to the right of this item.
* @type {Item | null}
*/
this.right = right;
/**
* The item that was originally to the right of this item.
* @type {ID | null}
*/
this.rightOrigin = rightOrigin;
/**
* @type {AbstractType<any>|ID|null}
*/
this.parent = parent;
/**
* If the parent refers to this item with some kind of key (e.g. YMap, the
* key is specified here. The key is then used to refer to the list in which
* to insert this item. If `parentSub = null` type._start is the list in
* which to insert to. Otherwise it is `parent._map`.
* @type {String | null}
*/
this.parentSub = parentSub;
/**
* If this type's effect is redone this type refers to the type that undid
* this operation.
* @type {ID | null}
*/
this.redone = null;
/**
* @type {AbstractContent}
*/
this.content = content;
/**
* bit1: keep
* bit2: countable
* bit3: deleted
* bit4: mark - mark node as fast-search-marker
* @type {number} byte
*/
this.info = this.content.isCountable() ? binary.BIT2 : 0;
}
/**
* This is used to mark the item as an indexed fast-search marker
*
* @type {boolean}
*/
set marker (isMarked) {
if (((this.info & binary.BIT4) > 0) !== isMarked) {
this.info ^= binary.BIT4;
}
}
get marker () {
return (this.info & binary.BIT4) > 0
}
/**
* If true, do not garbage collect this Item.
*/
get keep () {
return (this.info & binary.BIT1) > 0
}
set keep (doKeep) {
if (this.keep !== doKeep) {
this.info ^= binary.BIT1;
}
}
get countable () {
return (this.info & binary.BIT2) > 0
}
/**
* Whether this item was deleted or not.
* @type {Boolean}
*/
get deleted () {
return (this.info & binary.BIT3) > 0
}
set deleted (doDelete) {
if (this.deleted !== doDelete) {
this.info ^= binary.BIT3;
}
}
markDeleted () {
this.info |= binary.BIT3;
}
/**
* Return the creator clientID of the missing op or define missing items and return null.
*
* @param {Transaction} transaction
* @param {StructStore} store
* @return {null | number}
*/
getMissing (transaction, store) {
if (this.origin && this.origin.client !== this.id.client && this.origin.clock >= getState(store, this.origin.client)) {
return this.origin.client
}
if (this.rightOrigin && this.rightOrigin.client !== this.id.client && this.rightOrigin.clock >= getState(store, this.rightOrigin.client)) {
return this.rightOrigin.client
}
if (this.parent && this.parent.constructor === ID && this.id.client !== this.parent.client && this.parent.clock >= getState(store, this.parent.client)) {
return this.parent.client
}
// We have all missing ids, now find the items
if (this.origin) {
this.left = getItemCleanEnd(transaction, store, this.origin);
this.origin = this.left.lastId;
}
if (this.rightOrigin) {
this.right = getItemCleanStart(transaction, this.rightOrigin);
this.rightOrigin = this.right.id;
}
if ((this.left && this.left.constructor === GC) || (this.right && this.right.constructor === GC)) {
this.parent = null;
} else if (!this.parent) {
// only set parent if this shouldn't be garbage collected
if (this.left && this.left.constructor === Item) {
this.parent = this.left.parent;
this.parentSub = this.left.parentSub;
}
if (this.right && this.right.constructor === Item) {
this.parent = this.right.parent;
this.parentSub = this.right.parentSub;
}
} else if (this.parent.constructor === ID) {
const parentItem = getItem(store, this.parent);
if (parentItem.constructor === GC) {
this.parent = null;
} else {
this.parent = /** @type {ContentType} */ (parentItem.content).type;
}
}
return null
}
/**
* @param {Transaction} transaction
* @param {number} offset
*/
integrate (transaction, offset) {
if (offset > 0) {
this.id.clock += offset;
this.left = getItemCleanEnd(transaction, transaction.doc.store, createID(this.id.client, this.id.clock - 1));
this.origin = this.left.lastId;
this.content = this.content.splice(offset);
this.length -= offset;
}
if (this.parent) {
if ((!this.left && (!this.right || this.right.left !== null)) || (this.left && this.left.right !== this.right)) {
/**
* @type {Item|null}
*/
let left = this.left;
/**
* @type {Item|null}
*/
let o;
// set o to the first conflicting item
if (left !== null) {
o = left.right;
} else if (this.parentSub !== null) {
o = /** @type {AbstractType<any>} */ (this.parent)._map.get(this.parentSub) || null;
while (o !== null && o.left !== null) {
o = o.left;
}
} else {
o = /** @type {AbstractType<any>} */ (this.parent)._start;
}
// TODO: use something like DeleteSet here (a tree implementation would be best)
// @todo use global set definitions
/**
* @type {Set<Item>}
*/
const conflictingItems = new Set();
/**
* @type {Set<Item>}
*/
const itemsBeforeOrigin = new Set();
// Let c in conflictingItems, b in itemsBeforeOrigin
// ***{origin}bbbb{this}{c,b}{c,b}{o}***
// Note that conflictingItems is a subset of itemsBeforeOrigin
while (o !== null && o !== this.right) {
itemsBeforeOrigin.add(o);
conflictingItems.add(o);
if (compareIDs(this.origin, o.origin)) {
// case 1
if (o.id.client < this.id.client) {
left = o;
conflictingItems.clear();
} else if (compareIDs(this.rightOrigin, o.rightOrigin)) {
// this and o are conflicting and point to the same integration points. The id decides which item comes first.
// Since this is to the left of o, we can break here
break
} // else, o might be integrated before an item that this conflicts with. If so, we will find it in the next iterations
} else if (o.origin !== null && itemsBeforeOrigin.has(getItem(transaction.doc.store, o.origin))) { // use getItem instead of getItemCleanEnd because we don't want / need to split items.
// case 2
if (!conflictingItems.has(getItem(transaction.doc.store, o.origin))) {
left = o;
conflictingItems.clear();
}
} else {
break
}
o = o.right;
}
this.left = left;
}
// reconnect left/right + update parent map/start if necessary
if (this.left !== null) {
const right = this.left.right;
this.right = right;
this.left.right = this;
} else {
let r;
if (this.parentSub !== null) {
r = /** @type {AbstractType<any>} */ (this.parent)._map.get(this.parentSub) || null;
while (r !== null && r.left !== null) {
r = r.left;
}
} else {
r = /** @type {AbstractType<any>} */ (this.parent)._start
;/** @type {AbstractType<any>} */ (this.parent)._start = this;
}
this.right = r;
}
if (this.right !== null) {
this.right.left = this;
} else if (this.parentSub !== null) {
// set as current parent value if right === null and this is parentSub
/** @type {AbstractType<any>} */ (this.parent)._map.set(this.parentSub, this);
if (this.left !== null) {
// this is the current attribute value of parent. delete right
this.left.delete(transaction);
}
}
// adjust length of parent
if (this.parentSub === null && this.countable && !this.deleted) {
/** @type {AbstractType<any>} */ (this.parent)._length += this.length;
}
addStruct(transaction.doc.store, this);
this.content.integrate(transaction, this);
// add parent to transaction.changed
addChangedTypeToTransaction(transaction, /** @type {AbstractType<any>} */ (this.parent), this.parentSub);
if ((/** @type {AbstractType<any>} */ (this.parent)._item !== null && /** @type {AbstractType<any>} */ (this.parent)._item.deleted) || (this.parentSub !== null && this.right !== null)) {
// delete if parent is deleted or if this is not the current attribute value of parent
this.delete(transaction);
}
} else {
// parent is not defined. Integrate GC struct instead
new GC(this.id, this.length).integrate(transaction, 0);
}
}
/**
* Returns the next non-deleted item
*/
get next () {
let n = this.right;
while (n !== null && n.deleted) {
n = n.right;
}
return n
}
/**
* Returns the previous non-deleted item
*/
get prev () {
let n = this.left;
while (n !== null && n.deleted) {
n = n.left;
}
return n
}
/**
* Computes the last content address of this Item.
*/
get lastId () {
// allocating ids is pretty costly because of the amount of ids created, so we try to reuse whenever possible
return this.length === 1 ? this.id : createID(this.id.client, this.id.clock + this.length - 1)
}
/**
* Try to merge two items
*
* @param {Item} right
* @return {boolean}
*/
mergeWith (right) {
if (
this.constructor === right.constructor &&
compareIDs(right.origin, this.lastId) &&
this.right === right &&
compareIDs(this.rightOrigin, right.rightOrigin) &&
this.id.client === right.id.client &&
this.id.clock + this.length === right.id.clock &&
this.deleted === right.deleted &&
this.redone === null &&
right.redone === null &&
this.content.constructor === right.content.constructor &&
this.content.mergeWith(right.content)
) {
const searchMarker = /** @type {AbstractType<any>} */ (this.parent)._searchMarker;
if (searchMarker) {
searchMarker.forEach(marker => {
if (marker.p === right) {
// right is going to be "forgotten" so we need to update the marker
marker.p = this;
// adjust marker index
if (!this.deleted && this.countable) {
marker.index -= this.length;
}
}
});
}
if (right.keep) {
this.keep = true;
}
this.right = right.right;
if (this.right !== null) {
this.right.left = this;
}
this.length += right.length;
return true
}
return false
}
/**
* Mark this Item as deleted.
*
* @param {Transaction} transaction
*/
delete (transaction) {
if (!this.deleted) {
const parent = /** @type {AbstractType<any>} */ (this.parent);
// adjust the length of parent
if (this.countable && this.parentSub === null) {
parent._length -= this.length;
}
this.markDeleted();
addToDeleteSet(transaction.deleteSet, this.id.client, this.id.clock, this.length);
addChangedTypeToTransaction(transaction, parent, this.parentSub);
this.content.delete(transaction);
}
}
/**
* @param {StructStore} store
* @param {boolean} parentGCd
*/
gc (store, parentGCd) {
if (!this.deleted) {
throw error.unexpectedCase()
}
this.content.gc(store);
if (parentGCd) {
replaceStruct(store, this, new GC(this.id, this.length));
} else {
this.content = new ContentDeleted(this.length);
}
}
/**
* Transform the properties of this type to binary and write it to an
* BinaryEncoder.
*
* This is called when this Item is sent to a remote peer.
*
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder The encoder to write data to.
* @param {number} offset
*/
write (encoder, offset) {
const origin = offset > 0 ? createID(this.id.client, this.id.clock + offset - 1) : this.origin;
const rightOrigin = this.rightOrigin;
const parentSub = this.parentSub;
const info = (this.content.getRef() & binary.BITS5) |
(origin === null ? 0 : binary.BIT8) | // origin is defined
(rightOrigin === null ? 0 : binary.BIT7) | // right origin is defined
(parentSub === null ? 0 : binary.BIT6); // parentSub is non-null
encoder.writeInfo(info);
if (origin !== null) {
encoder.writeLeftID(origin);
}
if (rightOrigin !== null) {
encoder.writeRightID(rightOrigin);
}
if (origin === null && rightOrigin === null) {
const parent = /** @type {AbstractType<any>} */ (this.parent);
if (parent._item !== undefined) {
const parentItem = parent._item;
if (parentItem === null) {
// parent type on y._map
// find the correct key
const ykey = findRootTypeKey(parent);
encoder.writeParentInfo(true); // write parentYKey
encoder.writeString(ykey);
} else {
encoder.writeParentInfo(false); // write parent id
encoder.writeLeftID(parentItem.id);
}
} else if (parent.constructor === String) { // this edge case was added by differential updates
encoder.writeParentInfo(true); // write parentYKey
encoder.writeString(parent);
} else if (parent.constructor === ID) {
encoder.writeParentInfo(false); // write parent id
encoder.writeLeftID(parent);
} else {
error.unexpectedCase();
}
if (parentSub !== null) {
encoder.writeString(parentSub);
}
}
this.content.write(encoder, offset);
}
}
/**
* @param {UpdateDecoderV1 | UpdateDecoderV2} decoder
* @param {number} info
*/
const readItemContent = (decoder, info) => contentRefs[info & binary.BITS5](decoder);
/**
* A lookup map for reading Item content.
*
* @type {Array<function(UpdateDecoderV1 | UpdateDecoderV2):AbstractContent>}
*/
const contentRefs = [
() => { error.unexpectedCase(); }, // GC is not ItemContent
readContentDeleted, // 1
readContentJSON, // 2
readContentBinary, // 3
readContentString, // 4
readContentEmbed, // 5
readContentFormat, // 6
readContentType, // 7
readContentAny, // 8
readContentDoc, // 9
() => { error.unexpectedCase(); } // 10 - Skip is not ItemContent
];
const structSkipRefNumber = 10;
/**
* @private
*/
class Skip extends AbstractStruct {
get deleted () {
return true
}
delete () {}
/**
* @param {Skip} right
* @return {boolean}
*/
mergeWith (right) {
if (this.constructor !== right.constructor) {
return false
}
this.length += right.length;
return true
}
/**
* @param {Transaction} transaction
* @param {number} offset
*/
integrate (transaction, offset) {
// skip structs cannot be integrated
error.unexpectedCase();
}
/**
* @param {UpdateEncoderV1 | UpdateEncoderV2} encoder
* @param {number} offset
*/
write (encoder, offset) {
encoder.writeInfo(structSkipRefNumber);
// write as VarUint because Skips can't make use of predictable length-encoding
encoding.writeVarUint(encoder.restEncoder, this.length - offset);
}
/**
* @param {Transaction} transaction
* @param {StructStore} store
* @return {null | number}
*/
getMissing (transaction, store) {
return null
}
}
/** eslint-env browser */
const glo = /** @type {any} */ (typeof globalThis !== 'undefined'
? globalThis
: typeof window !== 'undefined'
? window
// @ts-ignore
: typeof global !== 'undefined' ? global : {});
const importIdentifier = '__ $YJS$ __';
if (glo[importIdentifier] === true) {
/**
* Dear reader of this message. Please take this seriously.
*
* If you see this message, make sure that you only import one version of Yjs. In many cases,
* your package manager installs two versions of Yjs that are used by different packages within your project.
* Another reason for this message is that some parts of your project use the commonjs version of Yjs
* and others use the EcmaScript version of Yjs.
*
* This often leads to issues that are hard to debug. We often need to perform constructor checks,
* e.g. `struct instanceof GC`. If you imported different versions of Yjs, it is impossible for us to
* do the constructor checks anymore - which might break the CRDT algorithm.
*
* https://github.com/yjs/yjs/issues/438
*/
console.error('Yjs was already imported. This breaks constructor checks and will lead to issues! - https://github.com/yjs/yjs/issues/438');
}
glo[importIdentifier] = true;
export { AbsolutePosition, AbstractConnector, AbstractStruct, AbstractType, YArray as Array, ContentAny, ContentBinary, ContentDeleted, ContentDoc, ContentEmbed, ContentFormat, ContentJSON, ContentString, ContentType, Doc, GC, ID, Item, YMap as Map, PermanentUserData, RelativePosition, Skip, Snapshot, YText as Text, Transaction, UndoManager, UpdateDecoderV1, UpdateDecoderV2, UpdateEncoderV1, UpdateEncoderV2, YXmlElement as XmlElement, YXmlFragment as XmlFragment, YXmlHook as XmlHook, YXmlText as XmlText, YArrayEvent, YEvent, YMapEvent, YTextEvent, YXmlEvent, applyUpdate, applyUpdateV2, cleanupYTextFormatting, compareIDs, compareRelativePositions, convertUpdateFormatV1ToV2, convertUpdateFormatV2ToV1, createAbsolutePositionFromRelativePosition, createDeleteSet, createDeleteSetFromStructStore, createDocFromSnapshot, createID, createRelativePositionFromJSON, createRelativePositionFromTypeIndex, createSnapshot, decodeRelativePosition, decodeSnapshot, decodeSnapshotV2, decodeStateVector, decodeUpdate, decodeUpdateV2, diffUpdate, diffUpdateV2, emptySnapshot, encodeRelativePosition, encodeSnapshot, encodeSnapshotV2, encodeStateAsUpdate, encodeStateAsUpdateV2, encodeStateVector, encodeStateVectorFromUpdate, encodeStateVectorFromUpdateV2, equalDeleteSets, equalSnapshots, findIndexSS, findRootTypeKey, getItem, getState, getTypeChildren, isDeleted, isParentOf, iterateDeletedStructs, logType, logUpdate, logUpdateV2, mergeDeleteSets, mergeUpdates, mergeUpdatesV2, obfuscateUpdate, obfuscateUpdateV2, parseUpdateMeta, parseUpdateMetaV2, readUpdate, readUpdateV2, relativePositionToJSON, snapshot, snapshotContainsUpdate, transact, tryGc, typeListToArraySnapshot, typeMapGetAllSnapshot, typeMapGetSnapshot };
//# sourceMappingURL=yjs.mjs.map