rittenhop-dev/versions/5.94.2/node_modules/node-jose/lib/deps/ecc/math.js

459 lines
12 KiB
JavaScript
Raw Normal View History

2024-09-23 19:40:12 -04:00
/**
* deps/ecc/math.js - Elliptic Curve Math
* Original Copyright (c) 2003-2005 Tom Wu.
* Modifications Copyright (c) 2015 Cisco Systems, Inc. See LICENSE file.
*
* Ported from Tom Wu, which is ported from BouncyCastle
* Modified to reuse existing external NPM modules, restricted to the
* NIST//SECG/X9.62 prime curves only, and formatted to match project
* coding styles.
*/
"use strict";
// Basic Javascript Elliptic Curve implementation
// Ported loosely from BouncyCastle's Java EC code
// Only Fp curves implemented for now
var BigInteger = require("../../deps/forge").jsbn.BigInteger;
// ----------------
// Helpers
function nbi() {
return new BigInteger(null);
}
// ----------------
// Barrett modular reduction
// constructor
function Barrett(m) {
// setup Barrett
this.r2 = nbi();
this.q3 = nbi();
BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
this.mu = this.r2.divide(m);
this.m = m;
}
function barrettConvert(x) {
if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
else if(x.compareTo(this.m) < 0) return x;
else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
}
function barrettRevert(x) { return x; }
// x = x mod m (HAC 14.42)
function barrettReduce(x) {
if (x.s < 0) { throw Error("Barrett reduction on negative input"); }
x.drShiftTo(this.m.t-1,this.r2);
if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
x.subTo(this.r2,x);
while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
}
// r = x^2 mod m; x != r
function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
// r = x*y mod m; x,y != r
function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
Barrett.prototype.convert = barrettConvert;
Barrett.prototype.revert = barrettRevert;
Barrett.prototype.reduce = barrettReduce;
Barrett.prototype.mulTo = barrettMulTo;
Barrett.prototype.sqrTo = barrettSqrTo;
// ----------------
// ECFieldElementFp
// constructor
function ECFieldElementFp(q, x) {
this.x = x;
// TODO if(x.compareTo(q) >= 0) error
this.p = q;
}
function feFpEquals(other) {
if (other === this) {
return true;
}
return (this.p.equals(other.p) && this.x.equals(other.x));
}
function feFpToBigInteger() {
return this.x;
}
function feFpNegate() {
return new ECFieldElementFp(this.p, this.x.negate().mod(this.p));
}
function feFpAdd(b) {
return new ECFieldElementFp(this.p, this.x.add(b.toBigInteger()).mod(this.p));
}
function feFpSubtract(b) {
return new ECFieldElementFp(this.p, this.x.subtract(b.toBigInteger()).mod(this.p));
}
function feFpMultiply(b) {
return new ECFieldElementFp(this.p, this.x.multiply(b.toBigInteger()).mod(this.p));
}
function feFpSquare() {
return new ECFieldElementFp(this.p, this.x.pow(2).mod(this.p));
}
function feFpDivide(b) {
return new ECFieldElementFp(this.p, this.x.multiply(b.toBigInteger().modInverse(this.p)).mod(this.p));
}
ECFieldElementFp.prototype.equals = feFpEquals;
ECFieldElementFp.prototype.toBigInteger = feFpToBigInteger;
ECFieldElementFp.prototype.negate = feFpNegate;
ECFieldElementFp.prototype.add = feFpAdd;
ECFieldElementFp.prototype.subtract = feFpSubtract;
ECFieldElementFp.prototype.multiply = feFpMultiply;
ECFieldElementFp.prototype.square = feFpSquare;
ECFieldElementFp.prototype.divide = feFpDivide;
// ----------------
// ECPointFp
// constructor
function ECPointFp(curve, x, y, z) {
this.curve = curve;
this.x = x;
this.y = y;
// Projective coordinates: either zinv == null or z * zinv == 1
// z and zinv are just BigIntegers, not fieldElements
if (!z) {
this.z = BigInteger.ONE;
} else {
this.z = z;
}
this.zinv = null;
//TODO: compression flag
}
function pointFpGetX() {
if(!this.zinv) {
this.zinv = this.z.modInverse(this.curve.p);
}
var r = this.x.toBigInteger().multiply(this.zinv);
this.curve.reduce(r);
return this.curve.fromBigInteger(r);
}
function pointFpGetY() {
if(!this.zinv) {
this.zinv = this.z.modInverse(this.curve.p);
}
var r = this.y.toBigInteger().multiply(this.zinv);
this.curve.reduce(r);
return this.curve.fromBigInteger(r);
}
function pointFpEquals(other) {
if (other === this) {
return true;
}
if (this.isInfinity()) {
return other.isInfinity();
}
if (other.isInfinity()) {
return this.isInfinity();
}
var u, v;
// u = Y2 * Z1 - Y1 * Z2
u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(this.curve.p);
if (!u.equals(BigInteger.ZERO)) {
return false;
}
// v = X2 * Z1 - X1 * Z2
v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(this.curve.p);
return v.equals(BigInteger.ZERO);
}
function pointFpIsInfinity() {
if ((this.x == null) && (this.y == null)) {
return true;
}
return (this.z.equals(BigInteger.ZERO) && !this.y.toBigInteger().equals(BigInteger.ZERO));
}
function pointFpNegate() {
return new ECPointFp(this.curve, this.x, this.y.negate(), this.z);
}
function pointFpAdd(b) {
if (this.isInfinity()) {
return b;
}
if (b.isInfinity()) {
return this;
}
// u = Y2 * Z1 - Y1 * Z2
var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod(this.curve.p);
// v = X2 * Z1 - X1 * Z2
var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod(this.curve.p);
if (BigInteger.ZERO.equals(v)) {
if (BigInteger.ZERO.equals(u)) {
return this.twice(); // this == b, so double
}
return this.curve.getInfinity(); // this = -b, so infinity
}
var THREE = new BigInteger("3");
var x1 = this.x.toBigInteger();
var y1 = this.y.toBigInteger();
var v2 = v.pow(2);
var v3 = v2.multiply(v);
var x1v2 = x1.multiply(v2);
var zu2 = u.pow(2).multiply(this.z);
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.p);
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.p);
// z3 = v^3 * z1 * z2
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.p);
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
}
function pointFpTwice() {
if(this.isInfinity()) {
return this;
}
if (this.y.toBigInteger().signum() === 0) {
return this.curve.getInfinity();
}
// TODO: optimized handling of constants
var THREE = new BigInteger("3");
var x1 = this.x.toBigInteger();
var y1 = this.y.toBigInteger();
var y1z1 = y1.multiply(this.z);
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.p);
var a = this.curve.a.toBigInteger();
// w = 3 * x1^2 + a * z1^2
var w = x1.pow(2).multiply(THREE);
if (!BigInteger.ZERO.equals(a)) {
w = w.add(this.z.pow(2).multiply(a));
}
w = w.mod(this.curve.p);
//this.curve.reduce(w);
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
var x3 = w.pow(2).subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.p);
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.pow(2).multiply(w)).mod(this.curve.p);
// z3 = 8 * (y1 * z1)^3
var z3 = y1z1.pow(2).multiply(y1z1).shiftLeft(3).mod(this.curve.p);
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
}
// Simple NAF (Non-Adjacent Form) multiplication algorithm
// TODO: modularize the multiplication algorithm
function pointFpMultiply(k) {
if (this.isInfinity()) {
return this;
}
if (k.signum() === 0) {
return this.curve.getInfinity();
}
var e = k;
var h = e.multiply(new BigInteger("3"));
var neg = this.negate();
var R = this;
var i;
for(i = h.bitLength() - 2; i > 0; --i) {
R = R.twice();
var hBit = h.testBit(i);
var eBit = e.testBit(i);
if (hBit !== eBit) {
R = R.add(hBit ? this : neg);
}
}
return R;
}
// Compute this*j + x*k (simultaneous multiplication)
function pointFpMultiplyTwo(j, x, k) {
var i;
if (j.bitLength() > k.bitLength()) {
i = j.bitLength() - 1;
} else {
i = k.bitLength() - 1;
}
var R = this.curve.getInfinity();
var both = this.add(x);
while (i >= 0) {
R = R.twice();
if (j.testBit(i)) {
if (k.testBit(i)) {
R = R.add(both);
}
else {
R = R.add(this);
}
}
else {
if (k.testBit(i)) {
R = R.add(x);
}
}
--i;
}
return R;
}
ECPointFp.prototype.getX = pointFpGetX;
ECPointFp.prototype.getY = pointFpGetY;
ECPointFp.prototype.equals = pointFpEquals;
ECPointFp.prototype.isInfinity = pointFpIsInfinity;
ECPointFp.prototype.negate = pointFpNegate;
ECPointFp.prototype.add = pointFpAdd;
ECPointFp.prototype.twice = pointFpTwice;
ECPointFp.prototype.multiply = pointFpMultiply;
ECPointFp.prototype.multiplyTwo = pointFpMultiplyTwo;
// ----------------
// ECCurveFp
// constructor
function ECCurveFp(p, a, b) {
this.p = p;
this.a = this.fromBigInteger(a);
this.b = this.fromBigInteger(b);
this.infinity = new ECPointFp(this, null, null);
this.reducer = new Barrett(this.p);
}
function curveFpgetP() {
return this.p;
}
function curveFpGetA() {
return this.a;
}
function curveFpGetB() {
return this.b;
}
function curveFpEquals(other) {
if (other === this) {
return true;
}
return (this.p.equals(other.p) && this.a.equals(other.a) && this.b.equals(other.b));
}
function curveFpContains(pt) {
// y^2 = x^3 + a*x + b mod p
var x = pt.getX().toBigInteger(),
y = pt.getY().toBigInteger(),
a = this.a.toBigInteger(),
b = this.b.toBigInteger(),
p = this.p;
var left = y.pow(2).mod(p),
right = x.pow(3).add(a.multiply(x)).add(b).mod(p)
return left.equals(right);
}
function curveFpGetInfinity() {
return this.infinity;
}
function curveFpFromBigInteger(x) {
return new ECFieldElementFp(this.p, x);
}
function curveReduce(x) {
this.reducer.reduce(x);
}
// for now, work with hex strings because they're easier in JS
function curveFpDecodePointHex(s) {
switch (parseInt(s.substring(0, 2), 16)) {
// first byte
case 0:
return this.infinity;
case 2:
case 3:
// point compression not supported yet
return null;
case 4:
case 6:
case 7:
var len = (s.length - 2) / 2;
var xHex = s.substr(2, len);
var yHex = s.substr(len + 2, len);
return new ECPointFp(this,
this.fromBigInteger(new BigInteger(xHex, 16)),
this.fromBigInteger(new BigInteger(yHex, 16)));
default: // unsupported
return null;
}
}
function curveFpEncodePointHex(p) {
if (p.isInfinity()) {
return "00";
}
var xHex = p.getX().toBigInteger().toString(16);
var yHex = p.getY().toBigInteger().toString(16);
var oLen = this.getP().toString(16).length;
if ((oLen % 2) !== 0) {
oLen++;
}
while (xHex.length < oLen) {
xHex = "0" + xHex;
}
while (yHex.length < oLen) {
yHex = "0" + yHex;
}
return "04" + xHex + yHex;
}
ECCurveFp.prototype.getP = curveFpgetP;
ECCurveFp.prototype.getA = curveFpGetA;
ECCurveFp.prototype.getB = curveFpGetB;
ECCurveFp.prototype.equals = curveFpEquals;
ECCurveFp.prototype.contains = curveFpContains;
ECCurveFp.prototype.getInfinity = curveFpGetInfinity;
ECCurveFp.prototype.fromBigInteger = curveFpFromBigInteger;
ECCurveFp.prototype.reduce = curveReduce;
ECCurveFp.prototype.decodePointHex = curveFpDecodePointHex;
ECCurveFp.prototype.encodePointHex = curveFpEncodePointHex;
// Exports
module.exports = {
ECFieldElementFp: ECFieldElementFp,
ECPointFp: ECPointFp,
ECCurveFp: ECCurveFp
};